

 Erlang System Documentation

 v27.3.4.3

 [image: Logo]

 Table of contents

 	Erlang/OTP System Documentation

 	Installation Guide

 	Introduction

 	Building and Installing Erlang/OTP

 	Cross Compiling Erlang/OTP

 	Building Erlang/OTP on Windows

 	Patching OTP Applications

 	Getting Started With Erlang

 	Introduction

 	Sequential Programming

 	Concurrent Programming

 	Robustness

 	Records and Macros

 	System Principles

 	System Principles

 	Error Logging

 	Creating and Upgrading a Target System

 	Upgrade when Erlang/OTP has Changed

 	Versions

 	Support, Compatibility, Deprecations, and Removal

 	OTP Design Principles

 	Overview

 	gen_server Behaviour

 	gen_statem Behaviour

 	gen_event Behaviour

 	Supervisor Behaviour

 	sys and proc_lib

 	Applications

 	Included Applications

 	Distributed Applications

 	Releases

 	Release Handling

 	Appup Cookbook

 	Programming Examples

 	Introduction

 	Records

 	Funs

 	List Comprehensions

 	Bit Syntax

 	Erlang Reference Manual

 	Introduction

 	Character Set and Source File Encoding

 	Data Types

 	Pattern Matching

 	Modules

 	Documentation

 	Functions

 	Types and Function Specifications

 	Opaques

 	Expressions

 	Preprocessor

 	Records

 	Errors and Error Handling

 	Features

 	Processes

 	Distributed Erlang

 	Compilation and Code Loading

 	Ports and Port Drivers

 	Efficiency Guide

 	Introduction

 	Common Caveats

 	Constructing and Matching Binaries

 	Maps

 	List Handling

 	Functions

 	Tables and Databases

 	Processes

 	Drivers

 	Memory Usage

 	System Limits

 	Profiling

 	Benchmarking

 	Interoperability Tutorial

 	Introduction

 	Overview

 	Problem Example

 	Ports

 	Erl_Interface

 	Port Drivers

 	C Nodes

 	NIFs

 	Debugging NIFs and Port Drivers

 	Embedded Systems User's Guide

 	Introduction

Erlang/OTP System Documentation

The Erlang/OTP system documentation is a collection of guides describing how
to use Erlang/OTP and different aspects of working with Erlang/OTP. The guides are:
	Installation Guide -
Describes how to build and install Erlang/OTP on Unix and Windows.
	Getting Started With Erlang -
Describes how to get up and running with programming Erlang.
	System Principles -
Describes how to build Erlang/OTP systems.
	OTP Design Principles -
Describes how to build Erlang/OTP applications.
	Programming Examples -
Examples on using records, funs, list comprehensions, and the bit syntax.
	Erlang Reference Manual -
This section is the Erlang reference manual. It describes the Erlang programming language.
	Efficiency Guide -
Describes how to write efficient code in Erlang-
	Interoperability Tutorial -
This section informs on interoperability, that is, information exchange, between
Erlang and other programming languages. The included examples mainly treat
interoperability between Erlang and C.
	Embedded Systems User's Guide -
This section describes the issues that are specific for running Erlang on an embedded system.

Introduction

This section describes how to build, install and patch Erlang/OTP on UNIX and Windows.
	Building and Installing Erlang/OTP - Describes how to build and install Erlang/OTP
on any UNIX platform, that is Linux, macOS, any BSD, Solaris and so on.
	Cross Compiling Erlang/OTP - Describes how to use a cross compiler to build
Erlang/OTP on any UNIX platform.
	Building Erlang/OTP on Windows - Describes how to build Erlang/OTP for on
Windows 10 using WSL.

There are also various other guides for other OS located in the
Erlang/OTP HOWTO folder.
Note
Depending on the Operating System and how familiar you are with using GNU configure/make
it can be difficult to build Erlang/OTP. Therefore it is recommended to first go to
https://erlang.org/downloads and check if a pre-built Erlang/OTP can be used.
If the purpose of building Erlang/OTP is to contribute to its development it is recommended
to have a look at
Contributing to Erlang/OTP
and Developing Erlang/OTP.

Building and Installing Erlang/OTP

 Introduction

This document describes how to build and install Erlang/OTP-27.
Erlang/OTP should be possible to build from source on any Unix/Linux system,
including macOS. You are advised to read the whole document
before attempting to build and install Erlang/OTP.
The source code can be downloaded from the official site of Erlang/OTP or GitHub.
	http://www.erlang.org/downloads
	https://github.com/erlang/otp

 Required Utilities

These are the tools you need in order to unpack and build Erlang/OTP.

 Unpacking

	 GNU unzip, or a modern uncompress.
	 A TAR program that understands the GNU TAR format for long filenames.

 Building

	 GNU make
	 Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, clang.
	 Perl 5
	 ncurses, termcap, or termlib -- The development headers and
libraries are needed, often known as ncurses-devel. Use
--without-termcap to build without any of these libraries. Note that
in this case only the old shell (without any line editing) can be used.
	 sed -- Stream Editor for basic text transformation.

Building in Git
Build the same way as when building the unpacked tar file.
Building on macOS
	 Xcode -- Download and install via the Mac App Store.
Read about Building on a Mac before proceeding.

 Installing

	 An install program that can take multiple file names.

 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met.
Here is a list of utilities needed for those applications. You will
also find the utilities needed for building the documentation.

 Building

	 OpenSSL -- The opensource toolkit for Secure Socket Layer
and Transport Layer Security.
Required for building the application crypto.
Further, ssl and ssh require a working crypto application and
will also be skipped if OpenSSL is missing. The public_key
application is available without crypto, but the functionality
will be very limited.
The development package of OpenSSL including the header files are needed as well
as the binary command program openssl. At least version 0.9.8 of OpenSSL is required.
Read more and download from http://www.openssl.org.

	 Oracle Java SE JDK -- The Java Development Kit (Standard Edition).
Required for building the application jinterface.
At least version 1.6.0 of the JDK is required.
Download from http://www.oracle.com/technetwork/java/javase/downloads.
We have also tested with IBM's JDK 1.6.0.

	 flex -- Headers and libraries are needed to build the flex
scanner for the megaco application on Unix/Linux.

	 wxWidgets -- Toolkit for GUI applications.
Required for building the wx application. At least
version 3.0 of wxWidgets is required.
Download from http://sourceforge.net/projects/wxwindows/files/3.0.0/
or get it from GitHub: https://github.com/wxWidgets/wxWidgets
Further instructions on wxWidgets, read Building with Wx.

 Building Documentation

	 ex_doc -- ExDoc is a tool to
generate html and epub documentation for Erlang and Elixir projects.
Download as an escript from github
or get it from GitHub: https://github.com/elixir-lang/ex_doc and build
your self.
ExDoc v0.37.3 was used to build the documentation for this release,
but any version after that should work just as well.
You can also use ./otp_build download_ex_doc to download the correct version
from github. One of the following dependencies are needed to check the documentation:
	sha256sum, or
	sha1sum, or
	shasum

 How to Build and Install Erlang/OTP

The following instructions are for building the released source tar ball
or from a git clone.
The variable $ERL_TOP will be mentioned a lot of times. It refers to
the top directory in the source tree. More information about $ERL_TOP
can be found in the make and $ERL_TOP section below.

 Unpacking

Start by unpacking the Erlang/OTP distribution file with your GNU
compatible TAR program.
$ tar -zxf otp_src_27.3.4.3.tar.gz # Assuming bash/sh

or clone from github:
$ git clone https://github.com/erlang/otp otp_src_27.3.4.3

Now change directory into the base directory and set the $ERL_TOP variable.
$ cd otp_src_27.3.4.3
$ export ERL_TOP=`pwd` # Assuming bash/sh

 Configuring

Run the following commands to configure the build:
$./configure [options]

By default, Erlang/OTP release will be installed in /usr/local/{bin,lib/erlang}.
If you for instance don't have the permission to install in the standard location,
 you can install Erlang/OTP somewhere else. For example, to install in
/opt/erlang/27.3.4.3/{bin,lib/erlang}, use the --prefix=/opt/erlang/27.3.4.3 option.
On some platforms Perl may behave strangely if certain locales are
set. If you get errors when building, try setting the LANG variable:
$ export LANG=C # Assuming bash/sh

 Building

Build the Erlang/OTP release.
$ make

 Testing

Before installation you should test whether your build is working properly
by running our smoke test. The smoke test is a subset of the complete Erlang/OTP test suites.
First you will need to build and release the test suites.
$ make release_tests

This creates an additional folder in $ERL_TOP/release called tests.
Now, it's time to start the smoke test.
$ cd release/tests/test_server
$ $ERL_TOP/bin/erl -s ts install -s ts smoke_test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/release/tests/test_server/index.html
in your web browser and make sure that there are zero failed test cases.
Note
On builds without crypto, ssl and ssh there is a failed test case
for undefined functions. Verify that the failed test case log only shows calls
to skipped applications.

 Installing

You are now ready to install the Erlang/OTP release!
The following command will install the release on your system.
$ make install

 Running

You should now have a working release of Erlang/OTP!
Jump to System Principles for instructions on running Erlang/OTP.

 How to Build the Documentation

Make sure you're in the top directory in the source tree.
$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have
already ran configure and do not need to do this again; otherwise, run
configure.
$./configure [Configure Args]

When building the documentation you need a full Erlang/OTP-27.3.4.3 system in
the $PATH.
$ export PATH=$ERL_TOP/bin:$PATH # Assuming bash/sh

To build html and epub docs you need to have ExDoc v0.37.3.
See Building Documentation for information on how to
install ExDoc.
Build the documentation using:
$ make docs

It is possible to limit which types of documentation is build by passing the DOC_TARGETS
environment variable to make docs.
Example:
$ make docs DOC_TARGETS=chunks

The currently available types are: html and chunks. Where:
	chunks - Build EEP-48 documentation chunks.
	html - Build html and epub documentation.

 How to Install the Documentation

The documentation can be installed either using the install-docs target,
or using the release_docs target.
	 If you have installed Erlang/OTP using the install target, install
the documentation using the install-docs target. Install locations
determined by configure will be used. $DESTDIR can be used the
same way as when doing make install.
$ make install-docs

	 If you have installed Erlang/OTP using the release target, install
the documentation using the release_docs target. You typically want
to use the same RELEASE_ROOT as when invoking make release.
$ make release_docs RELEASE_ROOT=<release dir>

It is possible to limit which types of documentation is released using the same DOC_TARGETS
environment variable as when building documentation.

 Accessing the Documentation

After installation you can access the documentation by
	 Browsing the html pages by loading the page /usr/local/lib/erlang/doc/erlang/index.html
or <BaseDir>/lib/erlang/doc/erlang/index.html if the prefix option has been used.

	 Read the embedded documentation by using the built-in shell functions h/1,2,3 or
ht/1,2,3.

 How to Install the Pre-formatted Documentation

Pre-formatted html documentation can be downloaded from http://www.erlang.org/download.html.
Extract the html archive in the installation directory.
$ cd <ReleaseDir>
$ tar -zxf otp_html_27.3.4.3.tar.gz

Where <ReleaseDir> is
	 <PrefixDir>/lib/erlang if you have installed Erlang/OTP using
make install.
	 $DESTDIR<PrefixDir>/lib/erlang if you have installed Erlang/OTP
using make install DESTDIR=<TmpInstallDir>.
	 RELEASE_ROOT if you have installed using
make release RELEASE_ROOT=<ReleaseDir>.

 Advanced configuration and build of Erlang/OTP

If you want to tailor your Erlang/OTP build and installation, please read
on for detailed information about the individual steps.

 make and $ERL_TOP

All the makefiles in the entire directory tree use the environment
variable ERL_TOP to find the absolute path of the installation. The
configure script will figure this out and set it in the top level
Makefile (which, when building, it will pass on). However, when
developing it is sometimes convenient to be able to run make in a
subdirectory. To do this you must set the ERL_TOP variable
before you run make.
For example, assume your GNU make program is called make and you
want to rebuild the application STDLIB, then you could do:
$ cd lib/stdlib; env ERL_TOP=<Dir> make

where <Dir> would be what you find ERL_TOP is set to in the top level
Makefile.

 otp_build vs configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/otp_build
script, or by invoking $ERL_TOP/configure and make directly. Building using
otp_build is easier since it involves fewer steps, but the otp_build build
procedure is not as flexible as the configure/make build procedure. The binary
releases for Windows that we deliver are built using otp_build.

 Configuring

The configure script is created by the GNU autoconf utility, which
checks for system specific features and then creates a number of makefiles.
The configure script allows you to customize a number of parameters;
type ./configure --help or ./configure --help=recursive for details.
./configure --help=recursive will give help for all configure scripts in
all applications.
One of the things you can specify is where Erlang/OTP should be installed. By
default Erlang/OTP will be installed in /usr/local/{bin,lib/erlang}.
To keep the same structure but install in a different place, <Dir> say,
use the --prefix argument like this: ./configure --prefix=<Dir>.
Some of the available configure options are:
	 --prefix=PATH - Specify installation prefix.
	 --disable-parallel-configure - Disable parallel execution of
configure scripts (parallel execution is enabled by default)
	 --{enable,disable}-jit - Force enabling or disabling of the JIT.
	 --{enable,disable}-kernel-poll - Kernel poll support (enabled by
default if possible)
	 --enable-m64-build - Build 64-bit binaries using the -m64 flag to
(g)cc
	 --enable-m32-build - Build 32-bit binaries using the -m32 flag to
(g)cc
	 --{enable,disable}-pie - Build position independent executable binaries.
	 --with-assumed-cache-line-size=SIZE - Set assumed cache-line size in
bytes. Default is 64. Valid values are powers of two between and
including 16 and 8192. The runtime system use this value in order to
try to avoid false sharing. A too large value wastes memory. A to
small value will increase the amount of false sharing.
	 --{with,without}-termcap - termcap (without implies that only the old
Erlang shell can be used)
	 --with-javac=JAVAC - Specify Java compiler to use
	 --{with,without}-javac - Java compiler (without implies that the
jinterface application won't be built)
	 --{enable,disable}-builtin-zlib - Use the built-in source for zlib.
	 --{enable,disable}-dynamic-ssl-lib - Enable or disable dynamic OpenSSL
libraries when linking the crypto NIF. By default dynamic linking is
done unless it does not work or is if it is a Windows system.
	 --{with,without}-ssl - OpenSSL (without implies that the crypto,
ssh, and ssl won't be built)
	 --with-ssl=PATH - Specify base location of OpenSSL include and lib
directories.
	 --with-ssl-incl=PATH - Specify base location of OpenSSL include
directory (if different than base location specified by --with-ssl=PATH).
	 --with-ssl-zlib=PATH - Path to static zlib library to link the
crypto NIF with. This zlib library is most often not necessary but
might be needed in order to link the NIF in some cases.
	 --with-ssl-lib-subdir=RELATIVE_PATH - Specify extra OpenSSL lib
sub-directory to search in (relative to base directory).
	 --with-ssl-rpath=yes|no|PATHS - Runtime library path for OpenSSL.
Default is yes, which equates to a number of standard locations. If
no, then no runtime library paths will be used. Anything else should be
a comma or colon separated list of paths.
	 --with-libatomic_ops=PATH - Use the libatomic_ops library for atomic
memory accesses. If configure should inform you about no native atomic
implementation available, you typically want to try using the
libatomic_ops library. It can be downloaded from
https://github.com/ivmai/libatomic_ops/.
	 --disable-smp-require-native-atomics - By default configure will
fail if an SMP runtime system is about to be built, and no implementation
for native atomic memory accesses can be found. If this happens, you are
encouraged to find a native atomic implementation that can be used, e.g.,
using libatomic_ops, but by passing --disable-smp-require-native-atomics
you can build using a fallback implementation based on mutexes or spinlocks.
Performance of the SMP runtime system will however suffer immensely without
an implementation for native atomic memory accesses.
	 --enable-static-{nifs,drivers} - To allow usage of nifs and drivers on OSs
that do not support dynamic linking of libraries it is possible to statically
link nifs and drivers with the main Erlang VM binary. This is done by passing
a comma separated list to the archives that you want to statically link. e.g.
--enable-static-nifs=/home/$USER/my_nif.a. The paths have to be absolute.
For drivers, the driver name has to be the same as the filename. You also
have to define STATIC_ERLANG_NIF_LIBNAME (see erl_nif documentation) or
STATIC_ERLANG_DRIVER when compiling the .o files for the nif/driver.
If your nif/driver depends on some other dynamic library, you now have to link
that to the Erlang VM binary. This is easily achieved by passing LIBS=-llibname
to configure.
	 --without-$app - By default all applications in Erlang/OTP will be included
in a release. If this is not wanted it is possible to specify that Erlang/OTP
should be compiled without one or more applications, i.e. --without-wx. There is
no automatic dependency handling between applications. If you disable
an application that another application depends on, you also have to disable the
dependent application.
	 --enable-gettimeofday-as-os-system-time - Force usage of gettimeofday() for
OS system time.
	 --enable-prefer-elapsed-monotonic-time-during-suspend - Prefer an OS monotonic
time source with elapsed time during suspend.
	 --disable-prefer-elapsed-monotonic-time-during-suspend - Do not prefer an OS
monotonic time source with elapsed time during suspend.
	 --with-clock-resolution=high|low - Try to find clock sources for OS system
time, and OS monotonic time with higher or lower resolution than chosen by
default. Note that both alternatives may have a negative impact on the performance
and scalability compared to the default clock sources chosen.
	 --enable-ensure-os-monotonic-time - Enable functionality ensuring the
monotonicity of monotonic timestamps delivered by the OS. When a
non-monotonic timestamp is detected, it will be replaced by the last
delivered monotonic timestamp before being used by Erlang's time
functionality. Note that you do not want to enable this unless the OS
monotonic time source on the system fails to produce monotonic timestamps.
This since ensuring the monotonicity of OS monotonic timestamps will hurt
scalability and performance of the system.
	 --disable-saved-compile-time - Disable saving of compile date and time
in the emulator binary.
	 --enable-ei-dynamic-lib - Make erl_interface build a shared library in addition
to the archive normally built.
	 --disable-year2038 - Don't support timestamps after mid-January 2038. By
default configure will try to enable support for timestamps after
mid-January 2038. If it cannot figure out how to do that, it will fail and
abort with an error. If you anyway want to build the system knowing that the
system won't function properly after mid-January 2038, you can pass this
option which will enable configure to continue without support for
timestamps after mid-January 2038. This is typically only an issue on 32-bit
platforms.

If you or your system has special requirements please read the Makefile for
additional configuration information.

Important Variables Inspected by configure
Compiler and Linker
	 CC - C compiler.
	 CFLAGS - C compiler flags. Defaults to "-g -O2". If you set it,
these will be removed.
	 STATIC_CFLAGS - Static C compiler flags.
	 CFLAG_RUNTIME_LIBRARY_PATH - This flag should set runtime library
search path for the shared libraries. Note that this actually is a
linker flag, but it needs to be passed via the compiler.
	 CPP - C pre-processor.
	 CPPFLAGS - C pre-processor flags.
	 CXX - C++ compiler.
	 CXXFLAGS - C++ compiler flags.
	 LD - Linker.
	 LDFLAGS - Linker flags.
	 LIBS - Libraries.

Dynamic Erlang Driver Linking
Note
Either set all or none of the DED_LD* variables (with the exception
of DED_LDFLAGS_CONFTEST).
	 DED_LD - Linker for Dynamically loaded Erlang Drivers.
	 DED_LDFLAGS - Linker flags to use with DED_LD.
	 DED_LDFLAGS_CONFTEST - Linker flags to use with DED_LD in configure
link tests if DED_LDFLAGS cannot be used in such tests. If not set,
DED_LDFLAGS will be used in configure tests.
	 DED_LD_FLAG_RUNTIME_LIBRARY_PATH - This flag should set runtime library
search path for shared libraries when linking with DED_LD.

Large File Support
Note
Either set all or none of the LFS_* variables.
	 LFS_CFLAGS - Large file support C compiler flags.
	 LFS_LDFLAGS - Large file support linker flags.
	 LFS_LIBS - Large file support libraries.

Other Tools
	 RANLIB - ranlib archive index tool.
	 AR - ar archiving tool.
	 GETCONF - getconf system configuration inspection tool. getconf is
currently used for finding out large file support flags to use, and
on Linux systems for finding out if we have an NPTL thread library or
not.

Updating configure Scripts
Generated configure scripts are nowadays included in the git repository.
If you modify any configure.in files or the erts/aclocal.m4 file, you need
to regenerate configure scripts before the changes will take effect. First
ensure that you have GNU autoconf of version 2.69 in your path. Then execute
./otp_build update_configure [--no-commit] in the $ERL_TOP directory. The
otp_build script will verify that autoconf is of correct version and will
refuse to update the configure scripts if it is of any other version.

Atomic Memory Operations and the VM
The VM with SMP support makes quite a heavy use of atomic memory operations.
An implementation providing native atomic memory operations is therefore very
important when building Erlang/OTP. By default the VM will refuse to build
if native atomic memory operations are not available.
Erlang/OTP itself provides implementations of native atomic memory operations
that can be used when compiling with a gcc compatible compiler for 32/64-bit
x86, 32/64-bit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When compiling with
a gcc compatible compiler for other architectures, the VM may be able to make
use of native atomic operations using the __atomic_* builtins (may be
available when using a gcc of at least version 4.7) and/or using the
__sync_* builtins (may be available when using a gcc of at least version
4.1). If only the gcc's __sync_* builtins are available, the performance
will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic
memory operations are provided by Windows APIs.
Native atomic implementation in the order preferred:
	 The implementation provided by Erlang/OTP.
	 The API provided by Windows.
	 The implementation based on the gcc __atomic_* builtins.
	 If none of the above are available for your architecture/compiler, you
are recommended to build and install libatomic_ops before building
Erlang/OTP. The libatomic_ops library provides native atomic memory
operations for a variety of architectures and compilers. When building
Erlang/OTP you need to inform the build system of where the
libatomic_ops library is installed using the
--with-libatomic_ops=PATH configure switch.
	 As a last resort, the implementation solely based on the gcc
__sync_* builtins. This will however cause lots of expensive and
unnecessary memory barrier instructions to be issued. That is,
performance will suffer. The configure script will warn at the end
of its execution if it cannot find any other alternative than this.

 Building

Building Erlang/OTP on a relatively fast computer takes approximately
5 minutes. To speed it up, you can utilize parallel make with the -j<num_jobs> option.
$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous
builds before the new build.
Make sure to read the Pre-built Source Release section below before doing a make clean.
Other useful information can be found here:
	Erlang/OTP GitHub wiki
	Contributing to Erlang/OTP
	Developing Erlang/OTP

macOS (Darwin)
Make sure that the command hostname returns a valid fully qualified host
name (this is configured in /etc/hostconfig). Otherwise you might experience
problems when running distributed systems.
If you develop linked-in drivers (shared library) you need to link using
gcc and the flags -bundle -flat_namespace -undefined suppress. You also
include -fno-common in CFLAGS when compiling. Use .so as the library
suffix.
If you have Xcode 4.3, or later, you will also need to download
"Command Line Tools" via the Downloads preference pane in Xcode.

Building with Wx
wxWidgets-3.2.x is recommended for building the wx application
(wxWidgets-3.0.x will also work). Download it from
https://www.wxwidgets.org/downloads or from
https://github.com/wxWidgets/wxWidgets. It is recommended to use the
latest release in the 3.2 series, which at the time of writing
is 3.2.2.1.
Note that the wxWidgets-3.3 versions are experimental, but they should
also work if 3.0 compatibility is enabled by adding
--enable-compat30 to the configure commands below.
On all other platforms, a shared library is built as follows:
$./configure --prefix=/usr/local
$ make && sudo make install
$ export PATH=/usr/local/bin:$PATH

On Linux, a static library is built as follows:
$ export CFLAGS=-fPIC
$ export CXXFLAGS=-fPIC
$./configure --prefix=/usr/local --disable-shared
$ make && sudo make install
$ export PATH=/usr/local/bin:$PATH

On macOs, a static library compatible with macOS 13 (Ventura) and later is built
as follows:
$./configure --prefix=/usr/local --with-macosx-version-min=13.0 --disable-shared
$ make
$ sudo make install
$ export PATH=/usr/local/bin:$PATH

Verify that the build and installation succeeded:
$ which wx-config && wx-config --version-full

Expected output is /usr/local/bin/wx-config on one line, followed by the full
version number. For example, if you built version 3.2.2.1, the expected output is:
/usr/local/bin/wx-config
3.2.2.1
Build Erlang/OTP in the usual way. To verify that wx application is
working run the following command:
$ erl -run wx demo

Pre-built Source Release
The source release is delivered with a lot of platform independent
build results already pre-built. If you want to remove these pre-built
files, invoke ./otp_build remove_prebuilt_files from the $ERL_TOP
directory. After you have done this, you can build exactly the same way
as before, but the build process will take a much longer time.
Warning
Doing make clean in an arbitrary directory of the source
tree, may remove files needed for bootstrapping the build.
Doing ./otp_build save_bootstrap from the $ERL_TOP directory before
doing make clean will ensure that it will be possible to build after
doing make clean. ./otp_build save_bootstrap will be invoked
automatically when make is invoked from $ERL_TOP with either the
clean target, or the default target. It is also automatically invoked
if ./otp_build remove_prebuilt_files is invoked.
If you need to verify the bootstrap beam files match the provided
source files, use ./otp_build update_primary to create a new commit that
contains differences, if any exist.

How to Build a Debug Enabled Erlang RunTime System
After completing all the normal building steps described above a debug
enabled runtime system can be built. To do this you have to change
directory to $ERL_TOP/erts/emulator and execute:
$ (cd $ERL_TOP/erts/emulator && make debug)

This will produce a beam.debug.smp executable. The
file are installed along side with the normal (opt) version beam.smp.
To start the debug enabled runtime system execute:
$ $ERL_TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking,
assert checking and various sanity checks to help a developer ensure
correctness. Some of these features can be enabled on a normal beam
using appropriate configure options.
There are other types of runtime systems that can be built as well
using the similar steps just described.
$ (cd $ERL_TOP/erts/emulator && make $TYPE)

where $TYPE is opt, gcov, gprof, debug, valgrind, asan or lcnt.
These different beam types are useful for debugging and profiling
purposes.

 Installing

	 Staged install using DESTDIR. You can perform the install
phase in a temporary directory and later move the installation into
its correct location by use of the DESTDIR variable:
$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDIR.
It can, however, not be run from there. It needs to be moved into the
correct location before it can be run. If DESTDIR have not been set
but INSTALL_PREFIX has been set, DESTDIR will be set to
INSTALL_PREFIX. Note that INSTALL_PREFIX in pre R13B04 was buggy
and behaved as EXTRA_PREFIX (see below). There are lots of areas of
use for an installation procedure using DESTDIR, e.g. when creating
a package, cross compiling, etc. Here is an example where the
installation should be located under /opt/local:
$./configure --prefix=/opt/local
$ make
$ make DESTDIR=/tmp/erlang-build install
$ cd /tmp/erlang-build/opt/local
$ # gnu-tar is used in this example
$ tar -zcf /home/me/my-erlang-build.tgz *
$ su -
Password: *****
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

	 Install using the release target. Instead of doing make install you
can create the installation in whatever directory you like using the
release target and run the Install script yourself. RELEASE_ROOT
is used for specifying the directory where the installation should be
created. This is what by default ends up under /usr/local/lib/erlang
if you do the install using make install. All installation paths
provided in the configure phase are ignored, as well as DESTDIR,
and INSTALL_PREFIX. If you want links from a specific bin directory
to the installation you have to set those up yourself. An example where
Erlang/OTP should be located at /home/me/OTP:
$./configure
$ make
$ make RELEASE_ROOT=/home/me/OTP release
$ cd /home/me/OTP
$./Install -minimal /home/me/OTP
$ mkdir -p /home/me/bin
$ cd /home/me/bin
$ ln -s /home/me/OTP/bin/erl erl
$ ln -s /home/me/OTP/bin/erlc erlc
$ ln -s /home/me/OTP/bin/escript escript
...

The Install script should currently be invoked as follows in the
directory where it resides (the top directory):
$./Install [-cross] [-minimal|-sasl] <ERL_ROOT>

where:
	 -minimal Creates an installation that starts up a minimal amount
of applications, i.e., only kernel and stdlib are started. The
minimal system is normally enough, and is what make install uses.
	 -sasl Creates an installation that also starts up the sasl
application.
	 -cross For cross compilation. Informs the install script that it
is run on the build machine.
	 <ERL_ROOT> - The absolute path to the Erlang installation to use
at run time. This is often the same as the current working directory,
but does not have to be. It can follow any other path through the
file system to the same directory.

If neither -minimal, nor -sasl is passed as argument you will be
prompted.

	 Test install using EXTRA_PREFIX. The content of the EXTRA_PREFIX
variable will prefix all installation paths when doing make install.
Note that EXTRA_PREFIX is similar to DESTDIR, but it does not have
the same effect as DESTDIR. The installation can and have to be run
from the location specified by EXTRA_PREFIX. That is, it can be useful
if you want to try the system out, running test suites, etc, before doing
the real install without EXTRA_PREFIX.

Symbolic Links in --bindir
When doing make install and the default installation prefix is used,
relative symbolic links will be created from /usr/local/bin to all public
Erlang/OTP executables in /usr/local/lib/erlang/bin. The installation phase
will try to create relative symbolic links as long as --bindir and the
Erlang bin directory, located under --libdir, both have --exec-prefix as
prefix. Where --exec-prefix defaults to --prefix. --prefix,
--exec-prefix, --bindir, and --libdir are all arguments that can be
passed to configure. One can force relative, or absolute links by passing
BINDIR_SYMLINKS=relative|absolute as arguments to make during the install
phase. Note that such a request might cause a failure if the request cannot
be satisfied.

 Erlang/OTP test architectures

Erlang/OTP are currently tested on the following hardware and operating systems.
This is not an exhaustive list, but we try to keep it as up to date as possible.
Architecture
	x86, x86-64
	Aarch32, Aarch64
	powerpc, powerpc64le
	Apple M1, M2, M2 Pro

Operating system
	Fedora 31
	FreeBSD
	macOS 13 - 14
	MontaVista 4
	NetBSD
	OpenBSD
	SLES 10, 11, 12
	SunOS 5.11
	Ubuntu 10.04 - 22.04
	Windows 11, Windows 10, Windows Server 2019

Cross Compiling Erlang/OTP

 Introduction

This document describes how to cross compile Erlang/OTP-27.
You are advised to read the whole document before attempting to cross
compile Erlang/OTP. However, before reading this document, you should read
Building and Installing Erlang/OTP which describes building
and installing Erlang/OTP in general.
In the text below $ERL_TOP is the top directory in the Erlang/OTP source tree.

 otp_build Versus configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/otp_build
script, or by invoking $ERL_TOP/configure and make directly. Building using
otp_build is easier since it involves fewer steps, but the otp_build build
procedure is not as flexible as the configure/make build procedure. Note
that otp_build configure will produce a default configuration that differs
from what configure will produce by default. For example, currently
--disable-dynamic-ssl-lib is added to the configure command line arguments
unless --enable-dynamic-ssl-lib has been explicitly passed. The defaults used by
otp_build configure may change at any time without prior notice.

 Cross Configuration

The $ERL_TOP/xcomp/erl-xcomp.conf.template file contains all available cross
configuration variables and can be used as a template when creating a cross
compilation configuration. All cross configuration variables are also
listed at the end of this document. For examples of working cross
configurations see the $ERL_TOP/xcomp/erl-xcomp-TileraMDE2.0-tilepro.conf
file and the $ERL_TOP/xcomp/erl-xcomp-x86_64-saf-linux-gnu.conf file. If the
default behavior of a variable is satisfactory, the variable does not need to
be set. However, the configure script will issue a warning when a default
value is used. When a variable has been set, no warning will be issued.
A cross configuration file can be passed to otp_build configure using the
--xcomp-conf command line argument. Note that configure does not accept
this command line argument. When using the configure script directly, pass
the configuration variables as arguments to configure using a
<VARIABLE>=<VALUE> syntax. Variables can also be passed as environment
variables to configure. However, if you pass the configuration in the
environment, make sure to unset all of these environment variables before
invoking make; otherwise, the environment variables might set make variables
in some applications, or parts of some applications, and you may end up with
an erroneously configured build.

 What can be Cross Compiled?

All Erlang/OTP applications except the wx application can be cross compiled.
The build of the wx driver will currently be automatically disabled when
cross compiling.

 Compatibility

The build system, including cross compilation configuration variables used,
may be subject to non backward compatible changes without prior notice.
Current cross build system has been tested when cross compiling some Linux/GNU
systems, but has only been partly tested on other platforms.

 Patches

Please submit any patches for cross compiling in a way consistent with this
system. All input is welcome as we have a very limited set of cross compiling
environments to test with. If a new configuration variable is needed, add it
to $ERL_TOP/xcomp/erl-xcomp.conf.template, and use it in configure.in.
Other files that might need to be updated are:
	$ERL_TOP/xcomp/erl-xcomp-vars.sh
	$ERL_TOP/erl-build-tool-vars.sh
	$ERL_TOP/erts/aclocal.m4
	$ERL_TOP/xcomp/README.md
	$ERL_TOP/xcomp/erl-xcomp-*.conf

Note that this might be an incomplete list of files that need to be updated.
General information on how to submit patches can be found at:
 http://wiki.github.com/erlang/otp/submitting-patches

 Build and Install Procedure

We will first go through the configure/make build procedure which people
probably are most familiar with.

 Building With configure/make Directly

Change directory into the top directory of the Erlang/OTP source tree.
$ cd $ERL_TOP

In order to compile Erlang code, a small Erlang bootstrap system has to be
built, or an Erlang/OTP system of the same release as the one being built
has to be provided in the $PATH. The Erlang/OTP for the target system will
be built using this Erlang system, together with the cross compilation tools
provided.
If you want to build using a compatible Erlang/OTP system in the $PATH,
jump to Cross Building the System.
Building a Bootstrap System
$./configure --enable-bootstrap-only
$ make

The --enable-bootstrap-only argument to configure isn't strictly necessary,
but will speed things up. It will only run configure in applications
necessary for the bootstrap, and will disable a lot of things not needed by
the bootstrap system. If you run configure without --enable-boostrap-only
you also have to run make as make bootstrap; otherwise, the whole system will
be built.
Cross Building the System
$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be
a full CPU-VENDOR-OS triplet, but can be. The full canonicalized
CPU-VENDOR-OS triplet will be created by executing
$ERL_TOP/make/autoconf/config.sub <HOST>. If config.sub fails, you need
to be more specific.
<BUILD> should equal the CPU-VENDOR-OS triplet of the system that you
build on. If you execute $ERL_TOP/make/autoconf/config.guess, it will in
most cases print the triplet you want to use for this.
The use of <HOST> and <BUILD> values that differ will trigger cross
compilation. Note that if <HOST> and <BUILD> differ, the canonicalized
values of <HOST> and <BUILD> must also differ. If they do not, the
configuration will fail.
Pass the cross compilation variables as command line arguments to configure
using a <VARIABLE>=<VALUE> syntax.
Note
You can not pass a configuration file using the --xcomp-conf
argument when you invoke configure directly. The --xcomp-conf argument
can only be passed to otp_build configure.
make will verify that the Erlang/OTP system used when building is of the
same release as the system being built, and will fail if this is not the case.
It is possible, however not recommended, to force the cross compilation even
though the wrong Erlang/OTP system is used. This by invoking make like this:
make ERL_XCOMP_FORCE_DIFFERENT_OTP=yes.
Warning
Invoking make ERL_XCOMP_FORCE_DIFFERENT_OTP=yes might fail,
silently produce suboptimal code, or silently produce erroneous code.
Installing
You can either install using the Installing Using Paths Determined by configure, or install manually.

Installing Using Paths Determined by configure
$ make install DESTDIR=<TEMPORARY_PREFIX>

make install will install at a location specified when doing configure.
configure arguments specifying where the installation should reside are for
example: --prefix, --exec-prefix, --libdir, --bindir, etc. By default
it will install under /usr/local. You typically do not want to install your
cross build under /usr/local on your build machine. Using DESTDIR
will cause the installation paths to be prefixed by $DESTDIR. This makes it
possible to install and package the installation on the build machine without
having to place the installation in the same directory on the build machine as
it should be executed from on the target machine.
When make install has finished, change directory into $DESTDIR, package
the system, move it to the target machine, and unpack it. Note that the
installation will only be working on the target machine at the location
determined by configure.

Installing Manually
$ make release RELEASE_ROOT=<RELEASE_DIR>

make release will copy what you have built for the target machine to
<RELEASE_DIR>. The Install script will not be run. The content of
<RELEASE_DIR> is what by default ends up in /usr/local/lib/erlang.
The Install script used when installing Erlang/OTP requires common Unix
tools such as sed to be present in your $PATH. If your target system
does not have such tools, you need to run the Install script on your
build machine before packaging Erlang/OTP. The Install script should
currently be invoked as follows in the directory where it resides
(the top directory):
$./Install [-cross] [-minimal|-sasl] <ERL_ROOT>

where:
	 -minimal Creates an installation that starts up a minimal amount
of applications, i.e., only kernel and stdlib are started. The
minimal system is normally enough, and is what make install uses.
	 -sasl Creates an installation that also starts up the sasl
application.
	 -cross For cross compilation. Informs the install script that it
is run on the build machine.
	 <ERL_ROOT> - The absolute path to the Erlang installation to use
at run time. This is often the same as the current working directory,
but does not have to be. It can follow any other path through the file
system to the same directory.

If neither -minimal, nor -sasl is passed as argument you will be
prompted.

You can now either do:
	 Decide where the installation should be located on the target machine,
run the Install script on the build machine, and package the installed
installation. The installation just need to be unpacked at the right
location on the target machine:
$ cd <RELEASE_DIR>
$./Install -cross [-minimal|-sasl] <ABSOLUTE_INSTALL_DIR_ON_TARGET>

or:
	 Package the installation in <RELEASE_DIR>, place it wherever you want
on your target machine, and run the Install script on your target
machine:
$ cd <ABSOLUTE_INSTALL_DIR_ON_TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE_INSTALL_DIR_ON_TARGET>

 Building With the otp_build Script

$ cd $ERL_TOP

$./otp_build configure --xcomp-conf=<FILE> [Other Config Args]

alternatively:
$./otp_build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in a file, pass it using the
--xcomp-conf=<FILE> command line argument. If not, pass --host=<HOST>,
--build=<BUILD>, and the configuration variables using a <VARIABLE>=<VALUE>
syntax on the command line (same as in Cross Building the System). Note that <HOST> and <BUILD>
have to be passed one way or the other; either by using erl_xcomp_host=<HOST>
and erl_xcomp_build=<BUILD> in the configuration file, or by using the
--host=<HOST>, and --build=<BUILD> command line arguments.
otp_build configure will configure both for the bootstrap system on the
build machine and the cross host system.
$./otp_build boot -a

otp_build boot -a will first build a bootstrap system for the build machine
and then do the cross build of the system.
$./otp_build release -a <RELEASE_DIR>

otp_build release -a will do the same as make release in [Installing Manually],
and you will after this have to do a manual ./Install on either
the host or target.

 Building and Installing the Documentation

After the system has been cross built you can build and install the
documentation the same way as after a native build of the system. See the
How to Build the Documentation section in the Building and Installing Erlang/OTP
document for information on how to build the documentation.

 Testing the cross compiled system

Some of the tests that come with erlang use native code to test. This means
that when cross compiling erlang you also have to cross compile test suites
in order to run tests on the target host. To do this you first have to release
the tests as usual.
$ make release_tests

or
$./otp_build tests

The tests will be released into $ERL_TOP/release/tests. After releasing the
tests you have to install the tests on the build machine. You supply the same
xcomp file as to ./otp_build in Building With the otp_build Script.
$ cd $ERL_TOP/release/tests/test_server/
$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile_testcases -s init stop

You should get a lot of printouts as the testcases are compiled. Once done you
should copy the entire $ERL_TOP/release/tests folder to the cross host system.
Then go to the cross host system and setup the erlang installed
to be in your $PATH. Then go to what previously was
$ERL_TOP/release/tests/test_server and issue the following command.
$ erl -s ts install -s ts run all_tests -s init stop

The configure should be skipped and all tests should hopefully pass. For more
details about how to use ts run erl -s ts help -s init stop

 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation
configuration file. Only the ones listed below will be guaranteed to be
visible throughout the whole execution of all configure scripts. Other
variables needs to be defined as arguments to configure or exported in
the environment.

 Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for
cross compilation using $ERL_TOP/otp_build configure.
Note
These variables currently have no effect if you configure using
the configure script directly.
	 erl_xcomp_build - The build system used. This value will be passed as
--build=$erl_xcomp_build argument to the configure script. It does
not have to be a full CPU-VENDOR-OS triplet, but can be. The full
CPU-VENDOR-OS triplet will be created by
$ERL_TOP/make/autoconf/config.sub $erl_xcomp_build. If set to guess,
the build system will be guessed using
$ERL_TOP/make/autoconf/config.guess.

	 erl_xcomp_host - Cross host/target system to build for. This value will
be passed as --host=$erl_xcomp_host argument to the configure script.
It does not have to be a full CPU-VENDOR-OS triplet, but can be. The
full CPU-VENDOR-OS triplet will be created by
$ERL_TOP/make/autoconf/config.sub $erl_xcomp_host.

	 erl_xcomp_configure_flags - Extra configure flags to pass to the
configure script.

 Cross Compiler and Other Tools

If the cross compilation tools are prefixed by <HOST>- you probably do
not need to set these variables (where <HOST> is what has been passed as
--host=<HOST> argument to configure). Compiler and other tools can
otherwise be identified via variables passed as arguments on the command
line to configure, in then xcomp file, or as environment variables. For
more information see the Important Variables Inspected by configure
section in Building and Installing Erlang/OTP.

 Cross System Root Locations

	 erl_xcomp_sysroot - The absolute path to the system root of the cross
compilation environment. Currently, the crypto, odbc, ssh and
ssl applications need the system root. These applications will be
skipped if the system root has not been set. The system root might be
needed for other things too. If this is the case and the system root
has not been set, configure will fail and request you to set it.

	 erl_xcomp_isysroot - The absolute path to the system root for includes
of the cross compilation environment. If not set, this value defaults
to $erl_xcomp_sysroot, i.e., only set this value if the include system
root path is not the same as the system root path.

 Optional Feature, and Bug Tests

These tests cannot (always) be done automatically when cross compiling. You
usually do not need to set these variables.
Warning
Setting these variables wrong may cause hard to detect
runtime errors. If you need to change these values, really make sure
that the values are correct.
Note
Some of these values will override results of tests performed
by configure, and some will not be used until configure is sure that
it cannot figure the result out.
The configure script will issue a warning when a default value is used.
When a variable has been set, no warning will be issued.
	 erl_xcomp_after_morecore_hook - yes|no. Defaults to no. If yes,
the target system must have a working __after_morecore_hook that can be
used for tracking used malloc() implementations core memory usage.
This is currently only used by unsupported features.

	 erl_xcomp_bigendian - yes|no. No default. If yes, the target system
must be big endian. If no, little endian. This can often be
automatically detected, but not always. If not automatically detected,
configure will fail unless this variable is set. Since no default
value is used, configure will try to figure this out automatically.

	 erl_xcomp_double_middle - yes|no. Defaults to no.
If yes, the target system must have doubles in "middle-endian" format. If
no, it has "regular" endianness.

	 erl_xcomp_clock_gettime_cpu_time - yes|no. Defaults to no. If yes,
the target system must have a working clock_gettime() implementation
that can be used for retrieving process CPU time.

	 erl_xcomp_getaddrinfo - yes|no. Defaults to no. If yes, the target
system must have a working getaddrinfo() implementation that can
handle both IPv4 and IPv6.

	 erl_xcomp_gethrvtime_procfs_ioctl - yes|no. Defaults to no. If yes,
the target system must have a working gethrvtime() implementation and
is used with procfs ioctl().

	 erl_xcomp_dlsym_brk_wrappers - yes|no. Defaults to no. If yes, the
target system must have a working dlsym(RTLD_NEXT, <S>) implementation
that can be used on brk and sbrk symbols used by the malloc()
implementation in use, and by this track the malloc() implementations
core memory usage. This is currently only used by unsupported features.

	 erl_xcomp_kqueue - yes|no. Defaults to no. If yes, the target
system must have a working kqueue() implementation that returns a file
descriptor which can be used by poll() and/or select(). If no and
the target system has not got epoll() or /dev/poll, the kernel-poll
feature will be disabled.

	 erl_xcomp_linux_clock_gettime_correction - yes|no. Defaults to yes on
Linux; otherwise, no. If yes, clock_gettime(CLOCK_MONOTONIC, _) on
the target system must work. This variable is recommended to be set to
no on Linux systems with kernel versions less than 2.6.

	 erl_xcomp_linux_nptl - yes|no. Defaults to yes on Linux; otherwise,
no. If yes, the target system must have NPTL (Native POSIX Thread
Library). Older Linux systems have LinuxThreads instead of NPTL (Linux
kernel versions typically less than 2.6).

	 erl_xcomp_linux_usable_sigaltstack - yes|no. Defaults to yes on Linux;
otherwise, no. If yes, sigaltstack() must be usable on the target
system. sigaltstack() on Linux kernel versions less than 2.4 are
broken.

	 erl_xcomp_linux_usable_sigusrx - yes|no. Defaults to yes. If yes,
the SIGUSR1 and SIGUSR2 signals must be usable by the ERTS. Old
LinuxThreads thread libraries (Linux kernel versions typically less than
2.2) used these signals and made them unusable by the ERTS.

	 erl_xcomp_poll - yes|no. Defaults to no on Darwin/MacOSX; otherwise,
yes. If yes, the target system must have a working poll()
implementation that also can handle devices. If no, select() will be
used instead of poll().

	 erl_xcomp_putenv_copy - yes|no. Defaults to no. If yes, the target
system must have a putenv() implementation that stores a copy of the
key/value pair.

	 erl_xcomp_reliable_fpe - yes|no. Defaults to no. If yes, the target
system must have reliable floating point exceptions.

	 erl_xcomp_posix_memalign - yes|no. Defaults to yes if posix_memalign
system call exists; otherwise no. If yes, the target system must have a
posix_memalign implementation that accepts larger than page size
alignment.

	 erl_xcomp_code_model_small - yes|no. Default to no. If yes, the target
system must place the beam.smp executable in the lower 2 GB of memory. That is it
should not use position independent executable.

Building Erlang/OTP on Windows

 Introduction

This section describes how to build the Erlang emulator and the OTP
libraries on Windows. Note that the Windows binary releases are still
a preferred alternative if one does not have Microsoft’s development
tools and/or don’t want to install WSL. You can download the binary
releases from https://erlang.org/downloads.
The instructions apply to Windows 10 (v.1809 and later) supporting the
WSL.1 (Windows Subsystem for Linux v.1) and using Ubuntu 18.04 release.
The procedure described uses WSL as a build environment. You run the
bash shell in WSL and use the gnu configure/make etc to do
the build. The emulator C-source code is, however, mostly compiled
with Microsoft Visual C++™, producing a native Windows binary. This is
the same procedure as we use to build the pre-built binaries. Why we
use VC++ and not gcc is explained further in the FAQ section.
These instructions apply for both 32-bit and 64-bit Windows. Note that
even if you build a 64-bit version of Erlang, most of the directories
and files involved are still named win32. Some occurrences of the name
win64 are however present. The installation file for a 64-bit Windows
version of Erlang, for example, is otp_win64_27.exe.
If you feel comfortable with the environment and build
system, and have all the necessary tools, you have a great opportunity
to make the Erlang/OTP distribution for Windows better. Please submit
any suggestions or patches to our git project to let
them find their way into the next version of Erlang. If making changes
to the build system (like makefiles etc) please bear in mind that the
same makefiles are used on Unix, so that your changes
don't break other platforms. That of course goes for C-code too; system
specific code resides in the $ERL_TOP/erts/emulator/sys/win32 and
$ERL_TOP/erts/etc/win32 directories mostly. The
$ERL_TOP/erts/emulator/beam directory is for common code.

 Short Version

In the following sections, we've described as much as we could about
the installation of the tools needed. Once the tools are installed,
building is quite easy. We have also tried to make these instructions
understandable for people with limited Unix experience. WSL is a whole
new environment to some Windows users, why careful explanation of
environment variables etc seemed to be in place.
This is the short story though, for the experienced and impatient:
	 Get and install complete WSL environment

	 Install Visual Studio 2019

	 Get and install windows JDK-8

	 Get and install windows NSIS 3.05 or later (3.05 tried and working)

	 Get, build and install OpenSSL v1.1.1d or later (up to 1.1.1d
tried & working) with static libs.

	 Get, build and install wxWidgets-3.2.2.1 or later (up to that
version tried & working) with static libs.

	 Get the Erlang source distribution (from
http://www.erlang.org/download.html) and unpack with tar
to the windows disk for example to: /mnt/c/src/

	 Install mingw-gcc, and make: sudo apt update && sudo apt install g++-mingw-w64 gcc-mingw-w64 make

	 $ cd UNPACK_DIR

	 Modify PATH and other environment variables so that all these tools
are runnable from a bash shell. Still standing in $ERL_TOP, issue
the following commands (for 32-bit Windows, remove the x64 from the
first row and change otp_win64_27 to otp_win32_27 on
the last row):
$ eval `./otp_build env_win32 x64`
$./otp_build configure
$./otp_build boot -a
$./otp_build release -a
$./otp_build installer_win32
$ release/win32/otp_win64_27 /S

Voila! Start->Programs->Erlang OTP 27->Erlang starts the Erlang
Windows shell.

 Tools you Need and Their Environment

You need some tools to be able to build Erlang/OTP on Windows. Most
notably you'll need WSL (with ubuntu), Visual Studio and
Microsofts Windows SDK, but you might also want a Java compiler, the
NSIS install system, OpenSSL and wxWidgets. Well, here's some information about
the different tools:
	 WSL: Install WSL and Ubuntu in Windows 10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
We have used and tested with WSL-1, WSL-2 was not available and may
not be preferred when building Erlang/OTP since access to the windows
disk is (currently) slower WSL-2.

	 Visual Studio 2019
Download and run the installer from:
 http://visualstudio.microsoft.com/downloads
Install C++ and SDK packages to the default installation directory.

	 Java JDK 8 or later (optional)
If you don't care about Java, you can skip this step. The
result will be that jinterface is not built.
Our Java code (jinterface, ic) is tested on windows with JDK 8.
Get it for Windows and install it, the JRE is not enough.
URL: http://www.oracle.com/java/technologies/javase-downloads.html
Add javac to your path environment, in my case this means:
PATH="/mnt/c/Program\ Files/Java/jdk1.8.0_241/bin:$PATH
No CLASSPATH or anything is needed. Type javac.exe in the bash prompt
and you should get a list of available Java options.

	 Nullsoft NSIS installer system (optional)
You need this to build the self installing package.
Download and run the installer from:
URL: http://nsis.sourceforge.net/download
Add 'makensis.exe' to your path environment:
PATH="/mnt/c/Program\ Files/NSIS/Bin:$PATH
Type which makensis.exe in the bash prompt and you should get the
path to the program.

	 OpenSSL (optional)
You need this to build crypto, ssh and ssl libs.
We recommend v1.1.1d or later.
There are prebuilt available binaries, which you can just
download and install, available here:
URL: http://wiki.openssl.org/index.php/Binaries
Install into C:/OpenSSL-Win64 (or C:/OpenSSL-Win32)

	 wxWidgets (optional)
You need this to build wx to use gui's in debugger and observer.
We recommend v3.2.2.1 or later.
Unpack into c:/opt/local64/pgm/wxWidgets-3.2.2.1
If the wxUSE_POSTSCRIPT isn't enabled in c:/opt/local64/pgm/wxWidgets-3.2.2.1/include/wx/msw/setup.h,
enable it.
We recommend to enable for wxWebView wxUSE_WEBVIEW_EDGE.
	 Download the nuget package 'Microsoft.Web.WebView2' (Version 0.9.488 or newer)
	 Extract the package (it's a zip archive) to wxWidgets/3rdparty/webview2 (you should have 3rdparty/webview2/build/native/include/WebView2.h file after unpacking it)
	 Enable wxUSE_WEBVIEW_EDGE in c:/opt/local64/pgm/wxWidgets-3.2.2.1/include/wx/msw/setup.h

Build with:
C:\...\> cd c:\opt\local64\pgm\wxWidgets-3.2.2.1\build\msw
C:\...\> nmake TARGET_CPU=amd64 BUILD=release SHARED=0 DIR_SUFFIX_CPU= -f makefile.vc
Remove the TARGET_CPU=amd64 for 32bit build.

	 Get the Erlang source distribution (from http://www.erlang.org/download.html).
The same as for Unix platforms. Preferably use tar to
unpack the source tar.gz (tar zxf otp_src_27.tar.gz) to somewhere
on the windows disk, /mnt/c/path/to/otp_src
NOTE: It is important that source on the windows disk.
Set the environment ERL_TOP to point to the root directory of the
source distribution. Let's say I stood in /mnt/c/src and unpacked
otp_src_27.tar.gz, I then add the following to .profile:
ERL_TOP=/mnt/c/src/otp_src_27
export ERL_TOP

 The Shell Environment

The path variable should now contain the windows paths to javac.exe and makensis.exe.
Setup the environment with:
$ export PATH
$ cd /mnt/c/path/to/otp_src/
$ eval `./otp_build env_win32 x64`

This should setup the additional environment variables.
This should do the final touch to the environment and building should
be easy after this. You could run ./otp_build env_win32 without
eval just to see what it does, and to see that the environment it
sets seems OK. The path is cleaned of spaces if possible (using DOS
style short names instead), the variables OVERRIDE_TARGET, CC, CXX,
AR and RANLIB are set to their respective wrappers and the directories
$ERL_TOP/erts/etc/win32/wsl_tools/vc and
$ERL_TOP/erts/etc/win32/wsl_tools are added first in the PATH.
Now you can check which erlc you have by writing type erlc in your shell.
It should reside in $ERL_TOP/erts/etc/win32/wsl_tools.
And running cl.exe should print the Microsoft compiler usage message.
The needed compiler environment variables are setup inside otp_build
via erts/etc/win32/wsl_tools/SetupWSLcross.bat. It contains some
hardcoded paths, if your installation path is different it can be added
to that file.

 Building and Installing

Building is easiest using the otp_build script:
$./otp_build configure <optional configure options>
$./otp_build boot -a
$./otp_build release -a <installation directory>
$./otp_build installer_win32 <installation directory> # optional

Now you will have a file called otp_win32_27.exe or otp_win64_27.exe
in the <installation directory>, i.e. $ERL_TOP/release/win32.
Lets get into more detail:
	 $./otp_build configure - This runs the newly generated configure
scripts with options making configure behave nicely. The target machine
type is plainly win32, so a lot of the configure-scripts recognize
this awkward target name and behave accordingly. The CC variable also
makes the compiler be cc.sh, which wraps MSVC++, so all configure
tests regarding the C compiler gets to run the right compiler. A lot of
the tests are not needed on Windows, but we thought it best to run the
whole configure anyway.

	 $./otp_build boot -a - This uses the bootstrap directory (shipped
with the source, $ERL_TOP/bootstrap) to build a complete OTP
system. When this is done you can run erl from within the source tree;
just type $ERL_TOP/bin/erl and you should have the prompt.

	 $./otp_build release -a - Builds a commercial release tree from the
source tree. The default is to put it in $ERL_TOP/release/win32. You can
give any directory as parameter, but it doesn't really
matter if you're going to build a self extracting installer too.

	 $./otp_build installer_win32 - Creates the self extracting installer executable.
The executable otp_win32_27.exe or otp_win64_27.exe will be placed
in the top directory of the release created in the previous step. If
no release directory is specified, the release is expected to have
been built to $ERL_TOP/release/win32, which also will be the place
where the installer executable will be placed. If you specified some
other directory for the release (i.e. ./otp_build release -a /tmp/erl_release), you're expected to give the same parameter here,
(i.e. ./otp_build installer_win32 /tmp/erl_release). You need to have
a full NSIS installation and makensis.exe in your path for this to
work. Once you have created the installer, you can run it to
install Erlang/OTP in the regular way, just run the executable and
follow the steps in the installation wizard. To get all default settings
in the installation without any questions asked, you run the executable
with the parameter /S (capital S) like in:
$ cd $ERL_TOP
$ release/win32/otp_win32_27 /S
...

or
$ cd $ERL_TOP
$ release/win32/otp_win64_27 /S
...

and after a while Erlang/OTP-27 will have been installed in
C:\Program Files\erl%ERTS-VSN%\, with shortcuts in the menu etc.

 Development

Once the system is built, you might want to change it. Having a test
release in some nice directory might be useful, but you can also run
Erlang from within the source tree. The target local_setup, makes
the program $ERL_TOP/bin/erl.exe usable and it also uses all the OTP
libraries in the source tree.
If you hack the emulator, you can build the emulator executable
by standing in $ERL_TOP/erts/emulator and do a simple
$ make opt

Note that you need to have run (cd $ERL_TOP && eval `./otp_build env_win32`)
in the particular shell before building anything on Windows. After
doing a make opt you can test your result by running $ERL_TOP/bin/erl.
If you want to copy the result to a release directory (say
/tmp/erl_release), you do this (still in $ERL_TOP/erts/emulator)
$ make TESTROOT=/tmp/erl_release release

That will copy the emulator executables.
To make a debug build of the emulator, you need to recompile both
beam.dll (the actual runtime system) and erlexec.dll. Do like this
$ cd $ERL_TOP
$ rm bin/win32/erlexec.dll
$ cd erts/emulator
$ make debug
$ cd ../etc
$ make debug

and sometimes
$ cd $ERL_TOP
$ make local_setup

So now when you run $ERL_TOP/erl.exe, you should have a debug compiled
emulator, which you will see if you do a:
1> erlang:system_info(system_version).
in the erlang shell. If the returned string contains [debug], you
got a debug compiled emulator.
To hack the erlang libraries, you simply do a make opt in the
specific "applications" directory, like:
$ cd $ERL_TOP/lib/stdlib
$ make opt

or even in the source directory...
$ cd $ERL_TOP/lib/stdlib/src
$ make opt

Note that you're expected to have a fresh Erlang in your path when
doing this, preferably the plain 27 you have built in the previous
steps. You could also add $ERL_TOP/bootstrap/bin to your PATH before
rebuilding specific libraries. That would give you a good enough
Erlang system to compile any OTP erlang code. Setting up the path
correctly is a little bit tricky. You still need to have
$ERL_TOP/erts/etc/win32/wsl_tools/vc and
$ERL_TOP/erts/etc/win32/wsl_tools before the actual emulator
in the path. A typical setting of the path for using the bootstrap
compiler would be:
$ export PATH=$ERL_TOP/erts/etc/win32/wsl_tools/vc\
:$ERL_TOP/erts/etc/win32/wsl_tools:$ERL_TOP/bootstrap/bin:$PATH

That should make it possible to rebuild any library without hassle...
If you want to copy a library (an application) newly built, to a
release area, you do like with the emulator:
$ cd $ERL_TOP/lib/stdlib
$ make TESTROOT=/tmp/erlang_release release

Remember that:
	 Windows specific C-code goes in the $ERL_TOP/erts/emulator/sys/win32,
$ERL_TOP/erts/emulator/drivers/win32 or $ERL_TOP/erts/etc/win32.

	 Windows specific erlang code should be used conditionally and the
host OS tested in runtime, the exactly same beam files should be
distributed for every platform! So write code like:
case os:type() of
 {win32,_} ->
 do_windows_specific();
 Other ->
 do_fallback_or_exit()
end,

That's basically all you need to get going.

 Frequently Asked Questions

	 Q: So, now I can build Erlang using GCC on Windows?
A: No, unfortunately not. You'll need Microsoft's Visual C++
still. A Bourne-shell script (cc.sh) wraps the Visual C++ compiler
and runs it from within the WSL environment. All other tools
needed to build Erlang are free-ware/open source, but not the C
compiler.

	 Q: Why haven't you got rid of VC++ then, you ******?
A: Well, partly because it's a good compiler - really! Actually it's
been possible in late R11-releases to build using mingw instead of
visual C++ (you might see the remnants of that in some scripts and
directories). Unfortunately the development of the SMP version for
Windows broke the mingw build and we chose to focus on the VC++ build
as the performance has been much better in the VC++ versions. The
mingw build will possibly be back, but as long as VC++ gives better
performance, the commercial build will be a VC++ one.

	 Q: Hah, I saw you, you used GCC even though you said you didn't!
A: OK, I admit, one of the files is compiled using
MinGW's GCC and the resulting object code is then converted to MS
VC++ compatible coff using a small C hack. It's because that
particular file, beam_emu.c benefits immensely from being able
to use the GCC labels-as-values extension, which boosts emulator
performance by up to 50%. That does unfortunately not (yet) mean
that all of OTP could be compiled using GCC. That particular
source code does not do anything system specific and actually is
adopted to the fact that GCC is used to compile it on Windows.

	 Q: So now there's a MS VC++ project file somewhere and I can build OTP
using the nifty VC++ GUI?
A: No, never. The hassle of keeping the project files up to date and
do all the steps that constitute an OTP build from within the VC++ GUI
is simply not worth it, maybe even impossible. A VC++ project
file for Erlang/OTP will never happen.

	 Q: So how does it all work then?
A: WSL/Ubuntu is the environment, it's almost like you had a
virtual Unix machine inside Windows. Configure, given certain
parameters, then creates makefiles that are used by the
environment's gnu-make to built the system. Most of the actual
compilers etc are not, however, WSL tools, so we've written
a couple of wrappers (Bourne-shell scripts), which reside in
$ERL_TOP/etc/win32/wsl_tools. They all do conversion of
parameters and switches common in the Unix environment to fit the
native Windows tools. Most notable is of course the paths, which
in WSL are Unix-like paths with "forward slashes" (/) and
no drive letters. The WSL specific command wslpath is used
for most of the path conversions in a WSL environment.
Luckily most compilers accept forward slashes instead
of backslashes as path separators, but one still have to get the drive
letters etc right, though. The wrapper scripts are not general in
the sense that, for example, cc.sh would understand and translate
every possible gcc option and pass correct options to
cl.exe. The principle is that the scripts are powerful enough to
allow building of Erlang/OTP, no more, no less. They might need
extensions to cope with changes during the development of Erlang, and
that's one of the reasons we made them into shell-scripts and not
Perl-scripts. We believe they are easier to understand and change
that way.
In $ERL_TOP, there is a script called otp_build. That script handles
the hassle of giving all the right parameters to configure/make and
also helps you set up the correct environment variables to work with
the Erlang source under WSL.

	 Q: Can I build something that looks exactly as the commercial release?
A: Yes, we use the exact same build procedure.

	 Q: Which version of WSL and other tools do you use then?
A: We use WSL 1 with Ubuntu 18.04.
The GCC we used for 27 was version 7.3-win32.
We used Visual studio 2019, Sun's JDK 1.8.0_241,
NSIS 3.05, Win32 OpenSSL 1.1.1d and wxWidgets-3.1.3.

Patching OTP Applications

 Introduction

This document describes the process of patching an existing OTP
installation with one or more Erlang/OTP applications of newer versions
than already installed. The tool otp_patch_apply is available for this
specific purpose. It resides in the top directory of the Erlang/OTP
source tree.
The otp_patch_apply tool utilizes the runtime_dependencies tag in
the application resource file. This information is used to determine
if the patch can be installed in the given Erlang/OTP installation
directory.
Read more about the version handling introduced in Erlang/OTP release
17, which also describes how to determine if an installation includes one
or more patched applications.
If you want to apply patches of multiple OTP applications that resides
in different OTP versions, you have to apply these patches in multiple
steps. It is only possible to apply multiple OTP applications from the
same OTP version at once.

 Prerequisites

It's assumed that the reader is familiar with
building and installing Erlang/OTP. To be able to patch an
application, the following must exist:
	An Erlang/OTP installation.

	An Erlang/OTP source tree containing the updated applications that
you want to patch into the existing Erlang/OTP installation.

 Using otp_patch_apply

Warning
Patching applications is a one-way process.
Create a backup of your OTP installation directory before
proceeding.
First of all, build the OTP source tree at $ERL_TOP containing
the updated applications.
Note
Before applying a patch you need to do a full build
of OTP in the source directory.
Configure and build all applications in OTP:
$ configure
$ make

or
$./otp_build configure
$./otp_build boot -a

If you have installed documentation in the OTP installation, also
build the documentation:
$ make docs

After the successful build it's time to patch. The source tree directory,
the directory of the installation and the applications to patch are given
as arguments to otp_patch_apply. The dependencies of each application
are validated against the applications in the installation and the other
applications given as arguments. If a dependency error is detected, the
script will be aborted.
The otp_patch_apply syntax:
$ otp_patch_apply -s <Dir> -i <Dir> [-l <Dir>] [-c] [-f] [-h] \
 [-n] [-v] <App1> [... <AppN>]

-s <Dir> -- OTP source directory that contains build results.
-i <Dir> -- OTP installation directory to patch.
-l <Dir> -- Alternative OTP source library directory path(s)
 containing build results of OTP applications.
 Multiple paths should be colon separated.
-c -- Cleanup (remove) old versions of applications
 patched in the installation.
-f -- Force patch of application(s) even though
 dependencies are not fulfilled (should only be
 considered in a test environment).
-h -- Print help then exit.
-n -- Do not install documentation.
-v -- Print version then exit.
<AppX> -- Application to patch.

Environment Variable:
 ERL_LIBS -- Alternative OTP source library directory path(s)
 containing build results of OTP applications.
 Multiple paths should be colon separated.

Note
The complete build environment is required while running
otp_patch_apply.
Note
All source directories identified by -s and -l should
contain build results of OTP applications.
For example, if the user wants to install patched versions of mnesia
and ssl built in /home/me/git/otp into the OTP installation
located in /opt/erlang/my_otp type
$ otp_patch_apply -s /home/me/git/otp -i /opt/erlang/my_otp \
 mnesia ssl

Note
If the list of applications contains core applications,
i.e erts, kernel, stdlib or sasl, the Install script in
the patched Erlang/OTP installation must be rerun.
The patched applications are appended to the list of installed
applications. Take a look at
<InstallDir>/releases/OTP-REL/installed_application_versions.

 Sanity check

The application dependencies can be checked using the Erlang shell.
Application dependencies are verified among installed applications by
otp_patch_apply, but these are not necessarily those actually loaded.
By calling system_information:sanity_check() one can validate
dependencies among applications actually loaded.
1> system_information:sanity_check().
ok
Please take a look at the reference of sanity_check() for more
information.

Introduction

This section is a quick start tutorial to get you started with Erlang.
Everything in this section is true, but only part of the truth. For example,
only the simplest form of the syntax is shown, not all esoteric forms. Also,
parts that are greatly simplified are indicated with manual. This means that a
lot more information on the subject is to be found in the Erlang book or in
Erlang Reference Manual.

 Prerequisites

The reader of this section is assumed to be familiar with the following:
	Computers in general
	Basics on how computers are programmed

 Omitted Topics

The following topics are not treated in this section:
	References.
	Local error handling (catch/throw).
	Single direction links (monitor).
	Handling of binary data (binaries / bit syntax).
	List comprehensions.
	How to communicate with the outside world and software written in other
languages (ports); this is described in
Interoperability Tutorial.
	Erlang libraries (for example, file handling).
	OTP and (in consequence) the Mnesia database.
	Hash tables for Erlang terms (ETS).
	Changing code in running systems.

Sequential Programming

 The Erlang Shell

Most operating systems have a command interpreter or shell, UNIX and Linux have
many, Windows has the command prompt, powershell and more. Erlang has its own shell
where bits of Erlang code can be written directly, and be evaluated to see what happens (see
the shell manual page in STDLIB).
Start the Erlang shell (in Linux or UNIX) by starting a shell or command
interpreter in your operating system and typing erl. You will see something
like this.
$ erl
Erlang R15B (erts-5.9.1) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with ^G)
1>
Type 2 + 5. in the shell and then press Enter (carriage return). Notice that
you tell the shell you are done entering code by finishing with a full stop .
and a carriage return.
1> 2 + 5.
7
2>
As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and
that it correctly says that 2 + 5 is 7. If you make writing mistakes in the
shell, you can delete with the backspace key, as in most shells. There are many
more editing commands in the shell (see
tty - A command line interface in ERTS User's Guide).
(Notice that many line numbers given by the shell in the following examples are
out of sequence. This is because this tutorial was written and code-tested in
separate sessions).
Here is a bit more complex calculation:
2> (42 + 77) * 66 / 3.
2618.0
Notice the use of brackets, the multiplication operator *, and the division
operator /, as in normal arithmetic (see
Expressions).
Press Control-C to shut down the Erlang system and the Erlang shell.
The following output is shown:
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
a
$
Type a to leave the Erlang system.
Another way to shut down the Erlang system is by entering halt/0:
3> halt().
$

 Modules and Functions

A programming language is not much use if you only can run code from the shell.
So here is a small Erlang program. Enter it into a file named tut.erl using a
suitable text editor. The file name tut.erl is important, and also that it is
in the same directory as the one where you started erl). If you are lucky your
editor has an Erlang mode that makes it easier for you to enter and format your
code nicely (see The Erlang mode for Emacs
in Tools User's Guide), but you can manage perfectly well without. Here is the
code to enter:
-module(tut).
-export([double/1]).

double(X) ->
 2 * X.
It is not hard to guess that this program doubles the value of numbers. The
first two lines of the code are described later. Let us compile the program.
This can be done in an Erlang shell as follows, where c means compile:
3> c(tut).
{ok,tut}
The {ok,tut} means that the compilation is OK. If it says error it means
that there is some mistake in the text that you entered. Additional error
messages gives an idea to what is wrong so you can modify the text and then try
to compile the program again.
Now run the program:
4> tut:double(10).
20
As expected, double of 10 is 20.
Now let us get back to the first two lines of the code. Erlang programs are
written in files. Each file contains an Erlang module. The first line of code
in the module is the module name (see Modules):
-module(tut).
Thus, the module is called tut. Notice the full stop . at the end of the
line. The files which are used to store the module must have the same name as
the module but with the extension .erl. In this case the file name is
tut.erl. When using a function in another module, the syntax
module_name:function_name(arguments) is used. So the following means call
function double in module tut with argument 10.
4> tut:double(10).
The second line says that the module tut contains a function called double,
which takes one argument (X in our example):
-export([double/1]).
The second line also says that this function can be called from outside the
module tut. More about this later. Again, notice the . at the end of the
line.
Now for a more complicated example, the factorial of a number. For example, the
factorial of 4 is 4 3 2 * 1, which equals 24.
Enter the following code in a file named tut1.erl:
-module(tut1).
-export([fac/1]).

fac(1) ->
 1;
fac(N) ->
 N * fac(N - 1).
So this is a module, called tut1 that contains a function called fac>, which
takes one argument, N.
The first part says that the factorial of 1 is 1.:
fac(1) ->
 1;
Notice that this part ends with a semicolon ; that indicates that there is
more of the function fac> to come.
The second part says that the factorial of N is N multiplied by the factorial of
N - 1:
fac(N) ->
 N * fac(N - 1).
Notice that this part ends with a . saying that there are no more parts of
this function.
Compile the file:
5> c(tut1).
{ok,tut1}
And now calculate the factorial of 4.
6> tut1:fac(4).
24
Here the function fac> in module tut1 is called with argument 4.
A function can have many arguments. Let us expand the module tut1 with the
function to multiply two numbers:
-module(tut1).
-export([fac/1, mult/2]).

fac(1) ->
 1;
fac(N) ->
 N * fac(N - 1).

mult(X, Y) ->
 X * Y.
Notice that it is also required to expand the -export line with the
information that there is another function mult with two arguments.
Compile:
7> c(tut1).
{ok,tut1}
Try out the new function mult:
8> tut1:mult(3,4).
12
In this example the numbers are integers and the arguments in the functions in
the code N, X, and Y are called variables. Variables must start with a
capital letter (see Variables). Examples of
variables are Number, ShoeSize, and Age.

 Atoms

Atom is another data type in Erlang. Atoms start with a small letter (see
Atom), for example, charles, centimeter, and
inch. Atoms are simply names, nothing else. They are not like variables, which
can have a value.
Enter the next program in a file named tut2.erl). It can be useful for
converting from inches to centimeters and conversely:
-module(tut2).
-export([convert/2]).

convert(M, inch) ->
 M / 2.54;

convert(N, centimeter) ->
 N * 2.54.
Compile:
9> c(tut2).
{ok,tut2}
Test:
10> tut2:convert(3, inch).
1.1811023622047243
11> tut2:convert(7, centimeter).
17.78
Notice the introduction of decimals (floating point numbers) without any
explanation. Hopefully you can cope with that.
Let us see what happens if something other than centimeter or inch is
entered in the convert function:
12> tut2:convert(3, miles).
** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)
The two parts of the convert function are called its clauses. As shown,
miles is not part of either of the clauses. The Erlang system cannot match
either of the clauses so an error message function_clause is returned. The
shell formats the error message nicely, but the error tuple is saved in the
shell's history list and can be output by the shell command v/1:
13> v(12).
{'EXIT',{function_clause,[{tut2,convert,
 [3,miles],
 [{file,"tut2.erl"},{line,4}]},
 {erl_eval,do_apply,6,
 [{file,"erl_eval.erl"},{line,677}]},
 {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
 {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
 {shell,eval_loop,3,
 [{file,"shell.erl"},{line,627}]}]}}

 Tuples

Now the tut2 program is hardly good programming style. Consider:
tut2:convert(3, inch).
Does this mean that 3 is in inches? Or does it mean that 3 is in centimeters and
is to be converted to inches? Erlang has a way to group things together to make
things more understandable. These are called tuples and are surrounded by
curly brackets, { and }.
So, {inch,3} denotes 3 inches and {centimeter,5} denotes 5 centimeters. Now
let us write a new program that converts centimeters to inches and conversely.
Enter the following code in a file called tut3.erl):
-module(tut3).
-export([convert_length/1]).

convert_length({centimeter, X}) ->
 {inch, X / 2.54};
convert_length({inch, Y}) ->
 {centimeter, Y * 2.54}.
Compile and test:
14> c(tut3).
{ok,tut3}
15> tut3:convert_length({inch, 5}).
{centimeter,12.7}
16> tut3:convert_length(tut3:convert_length({inch, 5})).
{inch,5.0}
Notice on line 16 that 5 inches is converted to centimeters and back again and
reassuringly get back to the original value. That is, the argument to a function
can be the result of another function. Consider how line 16 (above) works. The
argument given to the function {inch,5} is first matched against the first
head clause of convert_length, that is, convert_length({centimeter,X}). It
can be seen that {centimeter,X} does not match {inch,5} (the head is the bit
before the ->). This having failed, let us try the head of the next clause
that is, convert_length({inch,Y}). This matches, and Y gets the value 5.
Tuples can have more than two parts, in fact as many parts as you want, and
contain any valid Erlang term. For example, to represent the temperature of
various cities of the world:
{moscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}
Tuples have a fixed number of items in them. Each item in a tuple is called an
element. In the tuple {moscow,{c,-10}}, element 1 is moscow and element 2
is {c,-10}. Here c represents Celsius and f Fahrenheit.

 Lists

Whereas tuples group things together, it is also needed to represent lists of
things. Lists in Erlang are surrounded by square brackets, [and]. For
example, a list of the temperatures of various cities in the world can be:
[{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
 {paris, {f, 28}}, {london, {f, 36}}]
Notice that this list was so long that it did not fit on one line. This does not
matter, Erlang allows line breaks at all "sensible places" but not, for example,
in the middle of atoms, integers, and others.
A useful way of looking at parts of lists, is by using |. This is best
explained by an example using the shell:
17> [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]
18> First.
1
19> TheRest.
[2,3,4,5]
To separate the first elements of the list from the rest of the list, | is
used. First has got value 1 and TheRest has got the value [2,3,4,5].
Another example:
20> [E1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]
21> E1.
1
22> E2.
2
23> R.
[3,4,5,6,7]
Here you see the use of | to get the first two elements from the list. If you
try to get more elements from the list than there are elements in the list, an
error is returned. Notice also the special case of the list with no elements,
[]:
24> [A, B | C] = [1, 2].
[1,2]
25> A.
1
26> B.
2
27> C.
[]
In the previous examples, new variable names are used, instead of reusing the
old ones: First, TheRest, E1, E2, R, A, B, and C. The reason for
this is that a variable can only be given a value once in its context (scope).
More about this later.
The following example shows how to find the length of a list. Enter the
following code in a file named tut4.erl:
-module(tut4).

-export([list_length/1]).

list_length([]) ->
 0;
list_length([First | Rest]) ->
 1 + list_length(Rest).
Compile and test:
28> c(tut4).
{ok,tut4}
29> tut4:list_length([1,2,3,4,5,6,7]).
7
Explanation:
list_length([]) ->
 0;
The length of an empty list is obviously 0.
list_length([First | Rest]) ->
 1 + list_length(Rest).
The length of a list with the first element First and the remaining elements
Rest is 1 + the length of Rest.
(Advanced readers only: This is not tail recursive, there is a better way to
write this function.)
In general, tuples are used where "records" or "structs" are used in other
languages. Also, lists are used when representing things with varying sizes,
that is, where linked lists are used in other languages.
Erlang does not have a string data type. Instead, strings can be represented by
lists of Unicode characters. This implies for example that the list [97,98,99]
is equivalent to "abc". The Erlang shell is "clever" and guesses what list you
mean and outputs it in what it thinks is the most appropriate form, for example:
30> [97,98,99].
"abc"

 Maps

Maps are a set of key to value associations. These associations are encapsulated
with #{ and }. To create an association from "key" to value 42:
> #{ "key" => 42 }.
#{"key" => 42}
Let us jump straight into the deep end with an example using some interesting
features.
The following example shows how to calculate alpha blending using maps to
reference color and alpha channels. Enter the code in a file named color.erl):
-module(color).

-export([new/4, blend/2]).

-define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
 ?is_channel(B), ?is_channel(A) ->
 #{red => R, green => G, blue => B, alpha => A}.

blend(Src,Dst) ->
 blend(Src,Dst,alpha(Src,Dst)).

blend(Src,Dst,Alpha) when Alpha > 0.0 ->
 Dst#{
 red := red(Src,Dst) / Alpha,
 green := green(Src,Dst) / Alpha,
 blue := blue(Src,Dst) / Alpha,
 alpha := Alpha
 };
blend(_,Dst,_) ->
 Dst#{
 red := 0.0,
 green := 0.0,
 blue := 0.0,
 alpha := 0.0
 }.

alpha(#{alpha := SA}, #{alpha := DA}) ->
 SA + DA*(1.0 - SA).

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
 SV*SA + DV*DA*(1.0 - SA).
green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
 SV*SA + DV*DA*(1.0 - SA).
blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
 SV*SA + DV*DA*(1.0 - SA).
Compile and test:
> c(color).
{ok,color}
> C1 = color:new(0.3,0.4,0.5,1.0).
#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
> C2 = color:new(1.0,0.8,0.1,0.3).
#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
> color:blend(C1,C2).
#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
> color:blend(C2,C1).
#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}
This example warrants some explanation:
-define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
First a macro is_channel is defined to help with the guard tests. This is only
here for convenience and to reduce syntax cluttering. For more information about
macros, see The Preprocessor.
new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
 ?is_channel(B), ?is_channel(A) ->
 #{red => R, green => G, blue => B, alpha => A}.
The function new/4 creates a new map term and lets the keys red, green,
blue, and alpha be associated with an initial value. In this case, only
float values between and including 0.0 and 1.0 are allowed, as ensured by the
?is_channel/1 macro for each argument. Only the => operator is allowed when
creating a new map.
By calling blend/2 on any color term created by new/4, the resulting color
can be calculated as determined by the two map terms.
The first thing blend/2 does is to calculate the resulting alpha channel:
alpha(#{alpha := SA}, #{alpha := DA}) ->
 SA + DA*(1.0 - SA).
The value associated with key alpha is fetched for both arguments using the
:= operator. The other keys in the map are ignored, only the key alpha is
required and checked for.
This is also the case for functions red/2, blue/2, and green/2.
red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
 SV*SA + DV*DA*(1.0 - SA).
The difference here is that a check is made for two keys in each map argument.
The other keys are ignored.
Finally, let us return the resulting color in blend/3:
blend(Src,Dst,Alpha) when Alpha > 0.0 ->
 Dst#{
 red := red(Src,Dst) / Alpha,
 green := green(Src,Dst) / Alpha,
 blue := blue(Src,Dst) / Alpha,
 alpha := Alpha
 };
The Dst map is updated with new channel values. The syntax for updating an
existing key with a new value is with the := operator.

 Standard Modules and Manual Pages

Erlang has many standard modules to help you do things. For example, the module
io contains many functions that help in doing formatted input/output. To look
up information about standard modules, the command h(..) can be used at the
erlang shell. Try the erlang shell command:
1> h(io).

	io

 Standard I/O server interface functions.

 This module provides an interface to standard Erlang I/O servers. The output
 functions all return `ok` if they are successful, or exit if they are not.
 ...
If this does not work on your system, the documentation is included as HTML in
the Erlang/OTP release. You can also read the documentation as HTML or download
it as epub from <www.erlang.org/doc>.

 Writing Output to a Terminal

It is nice to be able to do formatted output in examples, so the next example
shows a simple way to use the io:format/2 function. Like all other exported
functions, you can test the io:format/2 function in the shell:
31> io:format("hello world~n", []).
hello world
ok
32> io:format("this outputs one Erlang term: ~w~n", [hello]).
this outputs one Erlang term: hello
ok
33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
this outputs two Erlang terms: helloworld
ok
34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
this outputs two Erlang terms: hello world
ok
The function io:format/2 (that is, format with two arguments) takes two lists.
The first one is nearly always a list written between " ". This list is printed
out as it is, except that each ~w is replaced by a term taken in order from the
second list. Each ~n is replaced by a new line. The io:format/2 function
itself returns the atom ok if everything goes as planned. Like other functions
in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it is a
deliberate policy. Erlang has sophisticated mechanisms to handle errors which
are shown later. As an exercise, try to make io:format/2 crash, it should not be
difficult. But notice that although io:format/2 crashes, the Erlang shell itself
does not crash.

 A Larger Example

Now for a larger example to consolidate what you have learnt so far. Assume that
you have a list of temperature readings from a number of cities in the world.
Some of them are in Celsius and some in Fahrenheit (as in the previous list).
First let us convert them all to Celsius, then let us print the data neatly.
%% This module is in file tut5.erl

-module(tut5).
-export([format_temps/1]).

%% Only this function is exported
format_temps([])-> % No output for an empty list
 ok;
format_temps([City | Rest]) ->
 print_temp(convert_to_celsius(City)),
 format_temps(Rest).

convert_to_celsius({Name, {c, Temp}}) -> % No conversion needed
 {Name, {c, Temp}};
convert_to_celsius({Name, {f, Temp}}) -> % Do the conversion
 {Name, {c, (Temp - 32) * 5 / 9}}.

print_temp({Name, {c, Temp}}) ->
 io:format("~-15w ~w c~n", [Name, Temp]).
35> c(tut5).
{ok,tut5}
36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
moscow -10 c
cape_town 21.11111111111111 c
stockholm -4 c
paris -2.2222222222222223 c
london 2.2222222222222223 c
ok
Before looking at how this program works, notice that a few comments are added
to the code. A comment starts with a %-character and goes on to the end of the
line. Notice also that the -export([format_temps/1]). line only includes the
function format_temps/1. The other functions are local functions, that is,
they are not visible from outside the module tut5.
Notice also that when testing the program from the shell, the input is spread
over two lines as the line was too long.
When format_temps is called the first time, City gets the value
{moscow,{c,-10}} and Rest is the rest of the list. So the function
print_temp(convert_to_celsius({moscow,{c,-10}})) is called.
Here is a function call as convert_to_celsius({moscow,{c,-10}}) as the
argument to the function print_temp. When function calls are nested like
this, they execute (evaluate) from the inside out. That is, first
convert_to_celsius({moscow,{c,-10}}) is evaluated, which gives the value
{moscow,{c,-10}} as the temperature is already in Celsius. Then
print_temp({moscow,{c,-10}}) is evaluated. The function convert_to_celsius
works in a similar way to the convert_length function in the previous example.
print_temp simply calls io:format in a similar way to what has been
described above. Notice that ~-15w says to print the "term" with a field length
(width) of 15 and left justify it. (see io:fwrite/1 manual page in STDLIB).
Now format_temps(Rest) is called with the rest of the list as an argument.
This way of doing things is similar to the loop constructs in other languages.
(Yes, this is recursion, but do not let that worry you.) So the same
format_temps function is called again, this time City gets the value
{cape_town,{f,70}} and the same procedure is repeated as before. This is done
until the list becomes empty, that is [], which causes the first clause
format_temps([]) to match. This simply returns (results in) the atom ok, so
the program ends.

 Matching, Guards, and Scope of Variables

It can be useful to find the maximum and minimum temperature in lists like this.
Before extending the program to do this, let us look at functions for finding
the maximum value of the elements in a list:
-module(tut6).
-export([list_max/1]).

list_max([Head|Rest]) ->
 list_max(Rest, Head).

list_max([], Res) ->
 Res;
list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
 list_max(Rest, Head);
list_max([Head|Rest], Result_so_far) ->
 list_max(Rest, Result_so_far).
37> c(tut6).
{ok,tut6}
38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
7
First notice that two functions have the same name, list_max. However, each of
these takes a different number of arguments (parameters). In Erlang these are
regarded as completely different functions. Where you need to distinguish
between these functions, you write Name/Arity, where Name is the function name
and Arity is the number of arguments, in this case list_max/1 and
list_max/2.
In this example you walk through a list "carrying" a value, in this case
Result_so_far. list_max/1 simply assumes that the max value of the list is
the head of the list and calls list_max/2 with the rest of the list and the
value of the head of the list. In the above this would be
list_max([2,3,4,5,7,4,3,2,1],1). If you tried to use list_max/1 with an
empty list or tried to use it with something that is not a list at all, you
would cause an error. Notice that the Erlang philosophy is not to handle errors
of this type in the function they occur, but to do so elsewhere. More about this
later.
In list_max/2, you walk down the list and use Head instead of
Result_so_far when Head > Result_so_far. when is a special word used
before the -> in the function to say that you only use this part of the function
if the test that follows is true. A test of this type is called guard. If the
guard is false (that is, the guard fails), the next part of the function is
tried. In this case, if Head is not greater than Result_so_far, then it must
be smaller or equal to it. This means that a guard on the next part of the
function is not needed.
Some useful operators in guards are:
	< less than
	> greater than
	== equal
	>= greater or equal
	=< less or equal
	/= not equal

(see Guard Sequences).
To change the above program to one that works out the minimum value of the
element in a list, you only need to write < instead of >. (But it would be wise
to change the name of the function to list_min.)
Earlier it was mentioned that a variable can only be given a value once in its
scope. In the above you see that Result_so_far is given several values. This
is OK since every time you call list_max/2 you create a new scope and one can
regard Result_so_far as a different variable in each scope.
Another way of creating and giving a variable a value is by using the match
operator = . So if you write M = 5, a variable called M is created with the
value 5. If, in the same scope, you then write M = 6, an error is returned.
Try this out in the shell:
39> M = 5.
5
40> M = 6.
** exception error: no match of right hand side value 6
41> M = M + 1.
** exception error: no match of right hand side value 6
42> N = M + 1.
6
The use of the match operator is particularly useful for pulling apart Erlang
terms and creating new ones.
43> {X, Y} = {paris, {f, 28}}.
{paris,{f,28}}
44> X.
paris
45> Y.
{f,28}
Here X gets the value paris and Y the value {f,28}.
If you try to do the same again with another city, an error is returned:
46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side value {london,{f,36}}
Variables can also be used to improve the readability of programs. For example,
in function list_max/2 above, you can write:
list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
 New_result_far = Head,
 list_max(Rest, New_result_far);
This is possibly a little clearer.

 More About Lists

Remember that the | operator can be used to get the head of a list:
47> [M1|T1] = [paris, london, rome].
[paris,london,rome]
48> M1.
paris
49> T1.
[london,rome]
The | operator can also be used to add a head to a list:
50> L1 = [madrid | T1].
[madrid,london,rome]
51> L1.
[madrid,london,rome]
Now an example of this when working with lists - reversing the order of a list:
-module(tut8).

-export([reverse/1]).

reverse(List) ->
 reverse(List, []).

reverse([Head | Rest], Reversed_List) ->
 reverse(Rest, [Head | Reversed_List]);
reverse([], Reversed_List) ->
 Reversed_List.
52> c(tut8).
{ok,tut8}
53> tut8:reverse([1,2,3]).
[3,2,1]
Consider how Reversed_List is built. It starts as [], then successively the
heads are taken off of the list to be reversed and added to the the
Reversed_List, as shown in the following:
reverse([1|2,3], []) =>
 reverse([2,3], [1|[]])

reverse([2|3], [1]) =>
 reverse([3], [2|[1])

reverse([3|[]], [2,1]) =>
 reverse([], [3|[2,1]])

reverse([], [3,2,1]) =>
 [3,2,1]
The module lists contains many functions for manipulating lists, for example,
for reversing them. So before writing a list-manipulating function it is a good
idea to check if one not already is written for you (see the lists manual
page in STDLIB).
Now let us get back to the cities and temperatures, but take a more structured
approach this time. First let us convert the whole list to Celsius as follows:
-module(tut7).
-export([format_temps/1]).

format_temps(List_of_cities) ->
 convert_list_to_c(List_of_cities).

convert_list_to_c([{Name, {f, F}} | Rest]) ->
 Converted_City = {Name, {c, (F -32)* 5 / 9}},
 [Converted_City | convert_list_to_c(Rest)];

convert_list_to_c([City | Rest]) ->
 [City | convert_list_to_c(Rest)];

convert_list_to_c([]) ->
 [].
Test the function:
54> c(tut7).
{ok, tut7}.
55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow,{c,-10}},
 {cape_town,{c,21.11111111111111}},
 {stockholm,{c,-4}},
 {paris,{c,-2.2222222222222223}},
 {london,{c,2.2222222222222223}}]
Explanation:
format_temps(List_of_cities) ->
 convert_list_to_c(List_of_cities).
Here format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes
off the head of the List_of_cities, converts it to Celsius if needed. The |
operator is used to add the (maybe) converted to the converted rest of the list:
[Converted_City | convert_list_to_c(Rest)];
or:
[City | convert_list_to_c(Rest)];
This is done until the end of the list is reached, that is, the list is empty:
convert_list_to_c([]) ->
 [].
Now when the list is converted, a function to print it is added:
-module(tut7).
-export([format_temps/1]).

format_temps(List_of_cities) ->
 Converted_List = convert_list_to_c(List_of_cities),
 print_temp(Converted_List).

convert_list_to_c([{Name, {f, F}} | Rest]) ->
 Converted_City = {Name, {c, (F -32)* 5 / 9}},
 [Converted_City | convert_list_to_c(Rest)];

convert_list_to_c([City | Rest]) ->
 [City | convert_list_to_c(Rest)];

convert_list_to_c([]) ->
 [].

print_temp([{Name, {c, Temp}} | Rest]) ->
 io:format("~-15w ~w c~n", [Name, Temp]),
 print_temp(Rest);
print_temp([]) ->
 ok.
56> c(tut7).
{ok,tut7}
57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
moscow -10 c
cape_town 21.11111111111111 c
stockholm -4 c
paris -2.2222222222222223 c
london 2.2222222222222223 c
ok
Now a function has to be added to find the cities with the maximum and minimum
temperatures. The following program is not the most efficient way of doing this
as you walk through the list of cities four times. But it is better to first
strive for clarity and correctness and to make programs efficient only if
needed.
-module(tut7).
-export([format_temps/1]).

format_temps(List_of_cities) ->
 Converted_List = convert_list_to_c(List_of_cities),
 print_temp(Converted_List),
 {Max_city, Min_city} = find_max_and_min(Converted_List),
 print_max_and_min(Max_city, Min_city).

convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
 Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
 [Converted_City | convert_list_to_c(Rest)];

convert_list_to_c([City | Rest]) ->
 [City | convert_list_to_c(Rest)];

convert_list_to_c([]) ->
 [].

print_temp([{Name, {c, Temp}} | Rest]) ->
 io:format("~-15w ~w c~n", [Name, Temp]),
 print_temp(Rest);
print_temp([]) ->
 ok.

find_max_and_min([City | Rest]) ->
 find_max_and_min(Rest, City, City).

find_max_and_min([{Name, {c, Temp}} | Rest],
 {Max_Name, {c, Max_Temp}},
 {Min_Name, {c, Min_Temp}}) ->
 if
 Temp > Max_Temp ->
 Max_City = {Name, {c, Temp}}; % Change
 true ->
 Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
 end,
 if
 Temp < Min_Temp ->
 Min_City = {Name, {c, Temp}}; % Change
 true ->
 Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
 end,
 find_max_and_min(Rest, Max_City, Min_City);

find_max_and_min([], Max_City, Min_City) ->
 {Max_City, Min_City}.

print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
 io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
 io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).
58> c(tut7).
{ok, tut7}
59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
moscow -10 c
cape_town 21.11111111111111 c
stockholm -4 c
paris -2.2222222222222223 c
london 2.2222222222222223 c
Max temperature was 21.11111111111111 c in cape_town
Min temperature was -10 c in moscow
ok

 If and Case

The function find_max_and_min works out the maximum and minimum temperature. A
new construct, if, is introduced here. If works as follows:
if
 Condition 1 ->
 Action 1;
 Condition 2 ->
 Action 2;
 Condition 3 ->
 Action 3;
 Condition 4 ->
 Action 4
end
Notice that there is no ; before end. Conditions do the same as guards, that
is, tests that succeed or fail. Erlang starts at the top and tests until it
finds a condition that succeeds. Then it evaluates (performs) the action
following the condition and ignores all other conditions and actions before the
end. If no condition matches, a run-time failure occurs. A condition that
always succeeds is the atom true. This is often used last in an if, meaning,
do the action following the true if all other conditions have failed.
The following is a short program to show the workings of if.
-module(tut9).
-export([test_if/2]).

test_if(A, B) ->
 if
 A == 5 ->
 io:format("A == 5~n", []),
 a_equals_5;
 B == 6 ->
 io:format("B == 6~n", []),
 b_equals_6;
 A == 2, B == 3 -> %That is A equals 2 and B equals 3
 io:format("A == 2, B == 3~n", []),
 a_equals_2_b_equals_3;
 A == 1 ; B == 7 -> %That is A equals 1 or B equals 7
 io:format("A == 1 ; B == 7~n", []),
 a_equals_1_or_b_equals_7
 end.
Testing this program gives:
60> c(tut9).
{ok,tut9}
61> tut9:test_if(5,33).
A == 5
a_equals_5
62> tut9:test_if(33,6).
B == 6
b_equals_6
63> tut9:test_if(2, 3).
A == 2, B == 3
a_equals_2_b_equals_3
64> tut9:test_if(1, 33).
A == 1 ; B == 7
a_equals_1_or_b_equals_7
65> tut9:test_if(33, 7).
A == 1 ; B == 7
a_equals_1_or_b_equals_7
66> tut9:test_if(33, 33).
** exception error: no true branch found when evaluating an if expression
 in function tut9:test_if/2 (tut9.erl, line 5)
Notice that tut9:test_if(33,33) does not cause any condition to succeed. This
leads to the run time error if_clause, here nicely formatted by the shell. See
Guard Sequences for details of the many guard tests
available.
case is another construct in Erlang. Recall that the convert_length function
was written as:
convert_length({centimeter, X}) ->
 {inch, X / 2.54};
convert_length({inch, Y}) ->
 {centimeter, Y * 2.54}.
The same program can also be written as:
-module(tut10).
-export([convert_length/1]).

convert_length(Length) ->
 case Length of
 {centimeter, X} ->
 {inch, X / 2.54};
 {inch, Y} ->
 {centimeter, Y * 2.54}
 end.
67> c(tut10).
{ok,tut10}
68> tut10:convert_length({inch, 6}).
{centimeter,15.24}
69> tut10:convert_length({centimeter, 2.5}).
{inch,0.984251968503937}
Both case and if have return values, that is, in the above example case
returned either {inch,X/2.54} or {centimeter,Y*2.54}. The behaviour of
case can also be modified by using guards. The following example clarifies
this. It tells us the length of a month, given the year. The year must be known,
since February has 29 days in a leap year.
-module(tut11).
-export([month_length/2]).

month_length(Year, Month) ->
 %% All years divisible by 400 are leap
 %% Years divisible by 100 are not leap (except the 400 rule above)
 %% Years divisible by 4 are leap (except the 100 rule above)
 Leap = if
 trunc(Year / 400) * 400 == Year ->
 leap;
 trunc(Year / 100) * 100 == Year ->
 not_leap;
 trunc(Year / 4) * 4 == Year ->
 leap;
 true ->
 not_leap
 end,
 case Month of
 sep -> 30;
 apr -> 30;
 jun -> 30;
 nov -> 30;
 feb when Leap == leap -> 29;
 feb -> 28;
 jan -> 31;
 mar -> 31;
 may -> 31;
 jul -> 31;
 aug -> 31;
 oct -> 31;
 dec -> 31
 end.
70> c(tut11).
{ok,tut11}
71> tut11:month_length(2004, feb).
29
72> tut11:month_length(2003, feb).
28
73> tut11:month_length(1947, aug).
31

 Built-In Functions (BIFs)

BIFs are functions that for some reason are built-in to the Erlang virtual
machine. BIFs often implement functionality that is impossible or is too
inefficient to implement in Erlang. Some BIFs can be called using the function
name only but they are by default belonging to the erlang module. For example,
the call to the BIF trunc below is equivalent to a call to erlang:trunc.
As shown, first it is checked if a year is leap. If a year is divisible by 400,
it is a leap year. To determine this, first divide the year by 400 and use the
BIF trunc (more about this later) to cut off any decimals. Then multiply by
400 again and see if the same value is returned again. For example, year 2004:
2004 / 400 = 5.01
trunc(5.01) = 5
5 * 400 = 2000
2000 is not the same as 2004, so 2004 is not divisible by 400. Year 2000:
2000 / 400 = 5.0
trunc(5.0) = 5
5 * 400 = 2000
That is, a leap year. The next two trunc-tests evaluate if the year is
divisible by 100 or 4 in the same way. The first if returns leap or
not_leap, which lands up in the variable Leap. This variable is used in the
guard for feb in the following case that tells us how long the month is.
This example showed the use of trunc. It is easier to use the Erlang operator
rem that gives the remainder after division, for example:
74> 2004 rem 400.
4
So instead of writing:
trunc(Year / 400) * 400 == Year ->
 leap;
it can be written:
Year rem 400 == 0 ->
 leap;
There are many other BIFs such as trunc. Only a few BIFs can be used in
guards, and you cannot use functions you have defined yourself in guards. (see
Guard Sequences) (For advanced readers: This is to
ensure that guards do not have side effects.) Let us play with a few of these
functions in the shell:
75> trunc(5.6).
5
76> round(5.6).
6
77> length([a,b,c,d]).
4
78> float(5).
5.0
79> is_atom(hello).
true
80> is_atom("hello").
false
81> is_tuple({paris, {c, 30}}).
true
82> is_tuple([paris, {c, 30}]).
false
All of these can be used in guards. Now for some BIFs that cannot be used in
guards:
83> atom_to_list(hello).
"hello"
84> list_to_atom("goodbye").
goodbye
85> integer_to_list(22).
"22"
These three BIFs do conversions that would be difficult (or impossible) to do in
Erlang.

 Higher-Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher-order
functions. Here is an example using the shell:
86> Xf = fun(X) -> X * 2 end.
#Fun<erl_eval.5.123085357>
87> Xf(5).
10
Here is defined a function that doubles the value of a number and assigned this
function to a variable. Thus Xf(5) returns value 10. Two useful functions when
working with lists are foreach and map, which are defined as follows:
foreach(Fun, [First|Rest]) ->
 Fun(First),
 foreach(Fun, Rest);
foreach(Fun, []) ->
 ok.

map(Fun, [First|Rest]) ->
 [Fun(First)|map(Fun,Rest)];
map(Fun, []) ->
 [].
These two functions are provided in the standard module lists. foreach takes
a list and applies a fun to every element in the list. map creates a new list
by applying a fun to every element in a list. Going back to the shell, map is
used and a fun to add 3 to every element of a list:
88> Add_3 = fun(X) -> X + 3 end.
#Fun<erl_eval.5.123085357>
89> lists:map(Add_3, [1,2,3]).
[4,5,6]
Let us (again) print the temperatures in a list of cities:
90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.
#Fun<erl_eval.5.123085357>
91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
moscow c -10
cape_town f 70
stockholm c -4
paris f 28
london f 36
ok
Let us now define a fun that can be used to go through a list of cities and
temperatures and transform them all to Celsius.
-module(tut13).

-export([convert_list_to_c/1]).

convert_to_c({Name, {f, Temp}}) ->
 {Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert_to_c({Name, {c, Temp}}) ->
 {Name, {c, Temp}}.

convert_list_to_c(List) ->
 lists:map(fun convert_to_c/1, List).
92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow,{c,-10}},
 {cape_town,{c,21}},
 {stockholm,{c,-4}},
 {paris,{c,-2}},
 {london,{c,2}}]
The convert_to_c function is the same as before, but here it is used as a fun:
lists:map(fun convert_to_c/1, List)
When a function defined elsewhere is used as a fun, it can be referred to as
Function/Arity (remember that Arity = number of arguments). So in the
map-call lists:map(fun convert_to_c/1, List) is written. As shown,
convert_list_to_c becomes much shorter and easier to understand.
The standard module lists also contains a function sort(Fun, List) where
Fun is a fun with two arguments. This fun returns true if the first argument
is less than the second argument, or else false. Sorting is added to the
convert_list_to_c:
-module(tut13).

-export([convert_list_to_c/1]).

convert_to_c({Name, {f, Temp}}) ->
 {Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert_to_c({Name, {c, Temp}}) ->
 {Name, {c, Temp}}.

convert_list_to_c(List) ->
 New_list = lists:map(fun convert_to_c/1, List),
 lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) ->
 Temp1 < Temp2 end, New_list).
93> c(tut13).
{ok,tut13}
94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow,{c,-10}},
 {stockholm,{c,-4}},
 {paris,{c,-2}},
 {london,{c,2}},
 {cape_town,{c,21}}]
In sort the fun is used:
fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,
Here the concept of an anonymous variable _ is introduced. This is simply
shorthand for a variable that gets a value, but the value is ignored. This can
be used anywhere suitable, not just in funs. Temp1 < Temp2 returns true if
Temp1 is less than Temp2.

Concurrent Programming

 Processes

One of the main reasons for using Erlang instead of other functional languages
is Erlang's ability to handle concurrency and distributed programming. By
concurrency is meant programs that can handle several threads of execution at
the same time. For example, modern operating systems allow you to use a word
processor, a spreadsheet, a mail client, and a print job all running at the same
time. Each processor (CPU) in the system is probably only handling one thread
(or job) at a time, but it swaps between the jobs at such a rate that it gives
the illusion of running them all at the same time. It is easy to create parallel
threads of execution in an Erlang program and to allow these threads to
communicate with each other. In Erlang, each thread of execution is called a
process.
(Aside: the term "process" is usually used when the threads of execution share
no data with each other and the term "thread" when they share data in some way.
Threads of execution in Erlang share no data, that is why they are called
processes).
The Erlang BIF spawn is used to create a new process:
spawn(Module, Exported_Function, List of Arguments). Consider the following
module:
-module(tut14).

-export([start/0, say_something/2]).

say_something(What, 0) ->
 done;
say_something(What, Times) ->
 io:format("~p~n", [What]),
 say_something(What, Times - 1).

start() ->
 spawn(tut14, say_something, [hello, 3]),
 spawn(tut14, say_something, [goodbye, 3]).
5> c(tut14).
{ok,tut14}
6> tut14:say_something(hello, 3).
hello
hello
hello
done
As shown, the function say_something writes its first argument the number of
times specified by second argument. The function start starts two Erlang
processes, one that writes "hello" three times and one that writes "goodbye"
three times. Both processes use the function say_something. Notice that a
function used in this way by spawn, to start a process, must be exported from
the module (that is, in the -export at the start of the module).
9> tut14:start().
hello
goodbye
<0.63.0>
hello
goodbye
hello
goodbye
Notice that it did not write "hello" three times and then "goodbye" three times.
Instead, the first process wrote a "hello", the second a "goodbye", the first
another "hello" and so forth. But where did the <0.63.0> come from? The return
value of a function is the return value of the last "thing" in the function. The
last thing in the function start is
spawn(tut14, say_something, [goodbye, 3]).
spawn returns a process identifier, or pid, which uniquely identifies the
process. So <0.63.0> is the pid of the spawn function call above. The next
example shows how to use pids.
Notice also that ~p is used instead of ~w in io:format/2. To quote the manual:
~p Writes the data with standard syntax in the same way as ~w, but breaks terms
whose printed representation is longer than one line into many lines and indents
each line sensibly. It also tries to detect flat lists of printable characters and
to output these as strings

 Message Passing

In the following example two processes are created and they send messages to
each other a number of times.
-module(tut15).

-export([start/0, ping/2, pong/0]).

ping(0, Pong_PID) ->
 Pong_PID ! finished,
 io:format("ping finished~n", []);

ping(N, Pong_PID) ->
 Pong_PID ! {ping, self()},
 receive
 pong ->
 io:format("Ping received pong~n", [])
 end,
 ping(N - 1, Pong_PID).

pong() ->
 receive
 finished ->
 io:format("Pong finished~n", []);
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 end.

start() ->
 Pong_PID = spawn(tut15, pong, []),
 spawn(tut15, ping, [3, Pong_PID]).
1> c(tut15).
{ok,tut15}
2> tut15: start().
<0.36.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished
Pong finished
The function start first creates a process, let us call it "pong":
Pong_PID = spawn(tut15, pong, [])
This process executes tut15:pong(). Pong_PID is the process identity of the
"pong" process. The function start now creates another process "ping":
spawn(tut15, ping, [3, Pong_PID]),
This process executes:
tut15:ping(3, Pong_PID)
<0.36.0> is the return value from the start function.
The process "pong" now does:
receive
 finished ->
 io:format("Pong finished~n", []);
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
end.
The receive construct is used to allow processes to wait for messages from
other processes. It has the following format:
receive
 pattern1 ->
 actions1;
 pattern2 ->
 actions2;

 patternN
 actionsN
end.
Notice there is no ";" before the end.
Messages between Erlang processes are simply valid Erlang terms. That is, they
can be lists, tuples, integers, atoms, pids, and so on.
Each process has its own input queue for messages it receives. New messages
received are put at the end of the queue. When a process executes a receive,
the first message in the queue is matched against the first pattern in the
receive. If this matches, the message is removed from the queue and the
actions corresponding to the pattern are executed.
However, if the first pattern does not match, the second pattern is tested. If
this matches, the message is removed from the queue and the actions
corresponding to the second pattern are executed. If the second pattern does not
match, the third is tried and so on until there are no more patterns to test. If
there are no more patterns to test, the first message is kept in the queue and
the second message is tried instead. If this matches any pattern, the
appropriate actions are executed and the second message is removed from the
queue (keeping the first message and any other messages in the queue). If the
second message does not match, the third message is tried, and so on, until the
end of the queue is reached. If the end of the queue is reached, the process
blocks (stops execution) and waits until a new message is received and this
procedure is repeated.
The Erlang implementation is "clever" and minimizes the number of times each
message is tested against the patterns in each receive.
Now back to the ping pong example.
"Pong" is waiting for messages. If the atom finished is received, "pong"
writes "Pong finished" to the output and, as it has nothing more to do,
terminates. If it receives a message with the format:
{ping, Ping_PID}
it writes "Pong received ping" to the output and sends the atom pong to the
process "ping":
Ping_PID ! pong
Notice how the operator "!" is used to send messages. The syntax of "!" is:
Pid ! Message
That is, Message (any Erlang term) is sent to the process with identity Pid.
After sending the message pong to the process "ping", "pong" calls the pong
function again, which causes it to get back to the receive again and wait for
another message.
Now let us look at the process "ping". Recall that it was started by executing:
tut15:ping(3, Pong_PID)
Looking at the function ping/2, the second clause of ping/2 is executed
since the value of the first argument is 3 (not 0) (first clause head is
ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so N becomes 3).
The second clause sends a message to "pong":
Pong_PID ! {ping, self()},
self/0 returns the pid of the process that executes self/0, in this case the
pid of "ping". (Recall the code for "pong", this lands up in the variable
Ping_PID in the receive previously explained.)
"Ping" now waits for a reply from "pong":
receive
 pong ->
 io:format("Ping received pong~n", [])
end,
It writes "Ping received pong" when this reply arrives, after which "ping" calls
the ping function again.
ping(N - 1, Pong_PID)
N-1 causes the first argument to be decremented until it becomes 0. When this
occurs, the first clause of ping/2 is executed:
ping(0, Pong_PID) ->
 Pong_PID ! finished,
 io:format("ping finished~n", []);
The atom finished is sent to "pong" (causing it to terminate as described
above) and "ping finished" is written to the output. "Ping" then terminates as
it has nothing left to do.

 Registered Process Names

In the above example, "pong" was first created to be able to give the identity
of "pong" when "ping" was started. That is, in some way "ping" must be able to
know the identity of "pong" to be able to send a message to it. Sometimes
processes which need to know each other's identities are started independently
of each other. Erlang thus provides a mechanism for processes to be given names
so that these names can be used as identities instead of pids. This is done by
using the register BIF:
register(some_atom, Pid)
Let us now rewrite the ping pong example using this and give the name pong to
the "pong" process:
-module(tut16).

-export([start/0, ping/1, pong/0]).

ping(0) ->
 pong ! finished,
 io:format("ping finished~n", []);

ping(N) ->
 pong ! {ping, self()},
 receive
 pong ->
 io:format("Ping received pong~n", [])
 end,
 ping(N - 1).

pong() ->
 receive
 finished ->
 io:format("Pong finished~n", []);
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 end.

start() ->
 register(pong, spawn(tut16, pong, [])),
 spawn(tut16, ping, [3]).
2> c(tut16).
{ok, tut16}
3> tut16:start().
<0.38.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished
Pong finished
Here the start/0 function,
register(pong, spawn(tut16, pong, [])),
both spawns the "pong" process and gives it the name pong. In the "ping"
process, messages can be sent to pong by:
pong ! {ping, self()},
ping/2 now becomes ping/1 as the argument Pong_PID is not needed.

 Distributed Programming

Let us rewrite the ping pong program with "ping" and "pong" on different
computers. First a few things are needed to set up to get this to work. The
distributed Erlang implementation provides a very basic authentication mechanism
to prevent unintentional access to an Erlang system on another computer. Erlang
systems which talk to each other must have the same magic cookie. The easiest
way to achieve this is by having a file called .erlang.cookie in your home
directory on all machines on which you are going to run Erlang systems
communicating with each other:
	On Windows systems the home directory is the directory pointed out by the
environment variable $HOME - you may need to set this.
	On Linux or UNIX you can safely ignore this and simply create a file called
.erlang.cookie in the directory you get to after executing the command cd
without any argument.

The .erlang.cookie file is to contain a line with the same atom. For example,
on Linux or UNIX, in the OS shell:
$ cd
$ cat > .erlang.cookie
this_is_very_secret
$ chmod 400 .erlang.cookie
The chmod above makes the .erlang.cookie file accessible only by the owner
of the file. This is a requirement.
When you start an Erlang system that is going to talk to other Erlang systems,
you must give it a name, for example:
$ erl -sname my_name
We will see more details of this later. If you want to experiment with
distributed Erlang, but you only have one computer to work on, you can start two
separate Erlang systems on the same computer but give them different names. Each
Erlang system running on a computer is called an Erlang node.
(Note: erl -sname assumes that all nodes are in the same IP domain and we can
use only the first component of the IP address, if we want to use nodes in
different domains we use -name instead, but then all IP address must be given
in full.)
Here is the ping pong example modified to run on two separate nodes:
-module(tut17).

-export([start_ping/1, start_pong/0, ping/2, pong/0]).

ping(0, Pong_Node) ->
 {pong, Pong_Node} ! finished,
 io:format("ping finished~n", []);

ping(N, Pong_Node) ->
 {pong, Pong_Node} ! {ping, self()},
 receive
 pong ->
 io:format("Ping received pong~n", [])
 end,
 ping(N - 1, Pong_Node).

pong() ->
 receive
 finished ->
 io:format("Pong finished~n", []);
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 end.

start_pong() ->
 register(pong, spawn(tut17, pong, [])).

start_ping(Pong_Node) ->
 spawn(tut17, ping, [3, Pong_Node]).
Let us assume there are two computers called gollum and kosken. First a node is
started on kosken, called ping, and then a node on gollum, called pong.
On kosken (on a Linux/UNIX system):
kosken> erl -sname ping
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ^G)
(ping@kosken)1>
On gollum:
gollum> erl -sname pong
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ^G)
(pong@gollum)1>
Now the "pong" process on gollum is started:
(pong@gollum)1> tut17:start_pong().
true
And the "ping" process on kosken is started (from the code above you can see
that a parameter of the start_ping function is the node name of the Erlang
system where "pong" is running):
(ping@kosken)1> tut17:start_ping(pong@gollum).
<0.37.0>
Ping received pong
Ping received pong
Ping received pong
ping finished
As shown, the ping pong program has run. On the "pong" side:
(pong@gollum)2>
Pong received ping
Pong received ping
Pong received ping
Pong finished
(pong@gollum)2>
Looking at the tut17 code, you see that the pong function itself is
unchanged, the following lines work in the same way irrespective of on which
node the "ping" process is executes:
{ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
Thus, Erlang pids contain information about where the process executes. So if
you know the pid of a process, the ! operator can be used to send it a
message disregarding if the process is on the same node or on a different node.
A difference is how messages are sent to a registered process on another node:
{pong, Pong_Node} ! {ping, self()},
A tuple {registered_name,node_name} is used instead of just the
registered_name.
In the previous example, "ping" and "pong" were started from the shells of two
separate Erlang nodes. spawn can also be used to start processes in other
nodes.
The next example is the ping pong program, yet again, but this time "ping" is
started in another node:
-module(tut18).

-export([start/1, ping/2, pong/0]).

ping(0, Pong_Node) ->
 {pong, Pong_Node} ! finished,
 io:format("ping finished~n", []);

ping(N, Pong_Node) ->
 {pong, Pong_Node} ! {ping, self()},
 receive
 pong ->
 io:format("Ping received pong~n", [])
 end,
 ping(N - 1, Pong_Node).

pong() ->
 receive
 finished ->
 io:format("Pong finished~n", []);
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 end.

start(Ping_Node) ->
 register(pong, spawn(tut18, pong, [])),
 spawn(Ping_Node, tut18, ping, [3, node()]).
Assuming an Erlang system called ping (but not the "ping" process) has already
been started on kosken, then on gollum this is done:
(pong@gollum)1> tut18:start(ping@kosken).
<3934.39.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong finished
ping finished
Notice that all the output is received on gollum. This is because the I/O system
finds out where the process is spawned from and sends all output there.

 A Larger Example

Now for a larger example with a simple "messenger". The messenger is a program
that allows users to log in on different nodes and send simple messages to each
other.
Before starting, notice the following:
	This example only shows the message passing logic - no attempt has been made
to provide a nice graphical user interface, although this can also be done in
Erlang.
	This sort of problem can be solved easier by use of the facilities in OTP,
which also provide methods for updating code on the fly and so on (see
OTP Design Principles).
	The first program contains some inadequacies regarding handling of nodes which
disappear. These are corrected in a later version of the program.

The messenger is set up by allowing "clients" to connect to a central server and
say who and where they are. That is, a user does not need to know the name of
the Erlang node where another user is located to send a message.
File messenger.erl:

%%% Message passing utility.
%%% User interface:
%%% logon(Name)
%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.
%%% logoff()
%%% Logs off anybody at that node
%%% message(ToName, Message)
%%% sends Message to ToName. Error messages if the user of this
%%% function is not logged on or if ToName is not logged on at
%%% any node.
%%%
%%% One node in the network of Erlang nodes runs a server which maintains
%%% data about the logged on users. The server is registered as "messenger"
%%% Each node where there is a user logged on runs a client process registered
%%% as "mess_client"
%%%
%%% Protocol between the client processes and the server
%%% --
%%%
%%% To server: {ClientPid, logon, UserName}
%%% Reply {messenger, stop, user_exists_at_other_node} stops the client
%%% Reply {messenger, logged_on} logon was successful
%%%
%%% To server: {ClientPid, logoff}
%%% Reply: {messenger, logged_off}
%%%
%%% To server: {ClientPid, logoff}
%%% Reply: no reply
%%%
%%% To server: {ClientPid, message_to, ToName, Message} send a message
%%% Reply: {messenger, stop, you_are_not_logged_on} stops the client
%%% Reply: {messenger, receiver_not_found} no user with this name logged on
%%% Reply: {messenger, sent} Message has been sent (but no guarantee)
%%%
%%% To client: {message_from, Name, Message},
%%%
%%% Protocol between the "commands" and the client
%%% --
%%%
%%% Started: messenger:client(Server_Node, Name)
%%% To client: logoff
%%% To client: {message_to, ToName, Message}
%%%
%%% Configuration: change the server_node() function to return the
%%% name of the node where the messenger server runs

-module(messenger).
-export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).

%%% Change the function below to return the name of the node where the
%%% messenger server runs
server_node() ->
 messenger@super.

%%% This is the server process for the "messenger"
%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server(User_List) ->
 receive
 {From, logon, Name} ->
 New_User_List = server_logon(From, Name, User_List),
 server(New_User_List);
 {From, logoff} ->
 New_User_List = server_logoff(From, User_List),
 server(New_User_List);
 {From, message_to, To, Message} ->
 server_transfer(From, To, Message, User_List),
 io:format("list is now: ~p~n", [User_List]),
 server(User_List)
 end.

%%% Start the server
start_server() ->
 register(messenger, spawn(messenger, server, [[]])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->
 %% check if logged on anywhere else
 case lists:keymember(Name, 2, User_List) of
 true ->
 From ! {messenger, stop, user_exists_at_other_node}, %reject logon
 User_List;
 false ->
 From ! {messenger, logged_on},
 [{From, Name} | User_List] %add user to the list
 end.

%%% Server deletes a user from the user list
server_logoff(From, User_List) ->
 lists:keydelete(From, 1, User_List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->
 %% check that the user is logged on and who he is
 case lists:keysearch(From, 1, User_List) of
 false ->
 From ! {messenger, stop, you_are_not_logged_on};
 {value, {From, Name}} ->
 server_transfer(From, Name, To, Message, User_List)
 end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->
 %% Find the receiver and send the message
 case lists:keysearch(To, 2, User_List) of
 false ->
 From ! {messenger, receiver_not_found};
 {value, {ToPid, To}} ->
 ToPid ! {message_from, Name, Message},
 From ! {messenger, sent}
 end.

%%% User Commands
logon(Name) ->
 case whereis(mess_client) of
 undefined ->
 register(mess_client,
 spawn(messenger, client, [server_node(), Name]));
 _ -> already_logged_on
 end.

logoff() ->
 mess_client ! logoff.

message(ToName, Message) ->
 case whereis(mess_client) of % Test if the client is running
 undefined ->
 not_logged_on;
 _ -> mess_client ! {message_to, ToName, Message},
 ok
end.

%%% The client process which runs on each server node
client(Server_Node, Name) ->
 {messenger, Server_Node} ! {self(), logon, Name},
 await_result(),
 client(Server_Node).

client(Server_Node) ->
 receive
 logoff ->
 {messenger, Server_Node} ! {self(), logoff},
 exit(normal);
 {message_to, ToName, Message} ->
 {messenger, Server_Node} ! {self(), message_to, ToName, Message},
 await_result();
 {message_from, FromName, Message} ->
 io:format("Message from ~p: ~p~n", [FromName, Message])
 end,
 client(Server_Node).

%%% wait for a response from the server
await_result() ->
 receive
 {messenger, stop, Why} -> % Stop the client
 io:format("~p~n", [Why]),
 exit(normal);
 {messenger, What} -> % Normal response
 io:format("~p~n", [What])
 end.
To use this program, you need to:
	Configure the server_node() function.
	Copy the compiled code (messenger.beam) to the directory on each computer
where you start Erlang.

In the following example using this program, nodes are started on four different
computers. If you do not have that many machines available on your network, you
can start several nodes on the same machine.
Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken,
c3@gollum.
First the server at messenger@super is started up:
(messenger@super)1> messenger:start_server().
true
Now Peter logs on at c1@bilbo:
(c1@bilbo)1> messenger:logon(peter).
true
logged_on
James logs on at c2@kosken:
(c2@kosken)1> messenger:logon(james).
true
logged_on
And Fred logs on at c3@gollum:
(c3@gollum)1> messenger:logon(fred).
true
logged_on
Now Peter sends Fred a message:
(c1@bilbo)2> messenger:message(fred, "hello").
ok
sent
Fred receives the message and sends a message to Peter and logs off:
Message from peter: "hello"
(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
ok
sent
(c3@gollum)3> messenger:logoff().
logoff
James now tries to send a message to Fred:
(c2@kosken)2> messenger:message(fred, "peter doesn't like you").
ok
receiver_not_found
But this fails as Fred has already logged off.
First let us look at some of the new concepts that have been introduced.
There are two versions of the server_transfer function: one with four
arguments (server_transfer/4) and one with five (server_transfer/5). These
are regarded by Erlang as two separate functions.
Notice how to write the server function so that it calls itself, through
server(User_List), and thus creates a loop. The Erlang compiler is "clever"
and optimizes the code so that this really is a sort of loop and not a proper
function call. But this only works if there is no code after the call.
Otherwise, the compiler expects the call to return and make a proper function
call. This would result in the process getting bigger and bigger for every loop.
Functions in the lists module are used. This is a very useful module and a
study of the manual page is recommended (erl -man lists).
lists:keymember(Key,Position,Lists) looks through a list of tuples and looks
at Position in each tuple to see if it is the same as Key. The first element
is position 1. If it finds a tuple where the element at Position is the same
as Key, it returns true, otherwise false.
3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
true
4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
false
lists:keydelete works in the same way but deletes the first tuple found (if
any) and returns the remaining list:
5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
[{x,y,z},{b,b,b},{q,r,s}]
lists:keysearch is like lists:keymember, but it returns
{value,Tuple_Found} or the atom false.
There are many very useful functions in the lists module.
An Erlang process (conceptually) runs until it does a receive and there is no
message which it wants to receive in the message queue. "conceptually" is used
here because the Erlang system shares the CPU time between the active processes
in the system.
A process terminates when there is nothing more for it to do, that is, the last
function it calls simply returns and does not call another function. Another way
for a process to terminate is for it to call exit/1. The argument
to exit/1 has a special meaning, which is discussed later. In this
example, exit(normal) is done, which has the same effect as a
process running out of functions to call.
The BIF whereis(RegisteredName) checks if a registered process
of name RegisteredName exists. If it exists, the pid of that process is
returned. If it does not exist, the atom undefined is returned.
You should by now be able to understand most of the code in the
messenger-module. Let us study one case in detail: a message is sent from one
user to another.
The first user "sends" the message in the example above by:
messenger:message(fred, "hello")
After testing that the client process exists:
whereis(mess_client)
And a message is sent to mess_client:
mess_client ! {message_to, fred, "hello"}
The client sends the message to the server by:
{messenger, messenger@super} ! {self(), message_to, fred, "hello"},
And waits for a reply from the server.
The server receives this message and calls:
server_transfer(From, fred, "hello", User_List),
This checks that the pid From is in the User_List:
lists:keysearch(From, 1, User_List)
If keysearch returns the atom false, some error has occurred and the server
sends back the message:
From ! {messenger, stop, you_are_not_logged_on}
This is received by the client, which in turn does exit(normal)
and terminates. If keysearch returns {value,{From,Name}} it is certain that
the user is logged on and that his name (peter) is in variable Name.
Let us now call:
server_transfer(From, peter, fred, "hello", User_List)
Notice that as this is server_transfer/5, it is not the same as the previous
function server_transfer/4. Another keysearch is done on User_List to find
the pid of the client corresponding to fred:
lists:keysearch(fred, 2, User_List)
This time argument 2 is used, which is the second element in the tuple. If this
returns the atom false, fred is not logged on and the following message is
sent:
From ! {messenger, receiver_not_found};
This is received by the client.
If keysearch returns:
{value, {ToPid, fred}}
The following message is sent to fred's client:
ToPid ! {message_from, peter, "hello"},
The following message is sent to peter's client:
From ! {messenger, sent}
Fred's client receives the message and prints it:
{message_from, peter, "hello"} ->
 io:format("Message from ~p: ~p~n", [peter, "hello"])
Peter's client receives the message in the await_result function.

Robustness

Several things are wrong with the messenger example in
A Larger Example. For example, if a node where a user is
logged on goes down without doing a logoff, the user remains in the server's
User_List, but the client disappears. This makes it impossible for the user to
log on again as the server thinks the user already is logged on.
Or what happens if the server goes down in the middle of sending a message,
leaving the sending client hanging forever in the await_result function?

 Time-outs

Before improving the messenger program, let us look at some general principles,
using the ping pong program as an example. Recall that when "ping" finishes, it
tells "pong" that it has done so by sending the atom finished as a message to
"pong" so that "pong" can also finish. Another way to let "pong" finish is to
make "pong" exit if it does not receive a message from ping within a certain
time. This can be done by adding a time-out to pong as shown in the
following example:
-module(tut19).

-export([start_ping/1, start_pong/0, ping/2, pong/0]).

ping(0, Pong_Node) ->
 io:format("ping finished~n", []);

ping(N, Pong_Node) ->
 {pong, Pong_Node} ! {ping, self()},
 receive
 pong ->
 io:format("Ping received pong~n", [])
 end,
 ping(N - 1, Pong_Node).

pong() ->
 receive
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 after 5000 ->
 io:format("Pong timed out~n", [])
 end.

start_pong() ->
 register(pong, spawn(tut19, pong, [])).

start_ping(Pong_Node) ->
 spawn(tut19, ping, [3, Pong_Node]).
After this is compiled and the file tut19.beam is copied to the necessary
directories, the following is seen on (pong@kosken):
(pong@kosken)1> tut19:start_pong().
true
Pong received ping
Pong received ping
Pong received ping
Pong timed out
And the following is seen on (ping@gollum):
(ping@gollum)1> tut19:start_ping(pong@kosken).
<0.36.0>
Ping received pong
Ping received pong
Ping received pong
ping finished
The time-out is set in:
pong() ->
 receive
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 after 5000 ->
 io:format("Pong timed out~n", [])
 end.
The time-out (after 5000) is started when receive is entered. The time-out
is canceled if {ping,Ping_PID} is received. If {ping,Ping_PID} is not
received, the actions following the time-out are done after 5000 milliseconds.
after must be last in the receive, that is, preceded by all other message
reception specifications in the receive. It is also possible to call a
function that returned an integer for the time-out:
after pong_timeout() ->
In general, there are better ways than using time-outs to supervise parts of a
distributed Erlang system. Time-outs are usually appropriate to supervise
external events, for example, if you have expected a message from some external
system within a specified time. For example, a time-out can be used to log a
user out of the messenger system if they have not accessed it for, say, ten
minutes.

 Error Handling

Before going into details of the supervision and error handling in an Erlang
system, let us see how Erlang processes terminate, or in Erlang terminology,
exit.
A process which executes exit(normal) or simply runs out of things
to do has a normal exit.
A process which encounters a runtime error (for example, divide by zero, bad
match, trying to call a function that does not exist and so on) exits with an
error, that is, has an abnormal exit. A process which executes
exit(Reason) where Reason is any Erlang term except the
atom normal, also has an abnormal exit.
An Erlang process can set up links to other Erlang processes. If a process calls
link(Other_Pid) it sets up a bidirectional link between
itself and the process called Other_Pid. When a process terminates, it sends
something called a signal to all the processes it has links to.
The signal carries information about the pid it was sent from and the exit
reason.
The default behaviour of a process that receives a normal exit is to ignore the
signal.
The default behaviour in the two other cases (that is, abnormal exit) above is
to:
	Bypass all messages to the receiving process.
	Kill the receiving process.
	Propagate the same error signal to the links of the killed process.

In this way you can connect all processes in a transaction together using links.
If one of the processes exits abnormally, all the processes in the transaction
are killed. As it is often wanted to create a process and link to it at the same
time, there is a special BIF, spawn_link that does the
same as spawn, but also creates a link to the spawned process.
Now an example of the ping pong example using links to terminate "pong":
-module(tut20).

-export([start/1, ping/2, pong/0]).

ping(N, Pong_Pid) ->
 link(Pong_Pid),
 ping1(N, Pong_Pid).

ping1(0, _) ->
 exit(ping);

ping1(N, Pong_Pid) ->
 Pong_Pid ! {ping, self()},
 receive
 pong ->
 io:format("Ping received pong~n", [])
 end,
 ping1(N - 1, Pong_Pid).

pong() ->
 receive
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 end.

start(Ping_Node) ->
 PongPID = spawn(tut20, pong, []),
 spawn(Ping_Node, tut20, ping, [3, PongPID]).
(s1@bill)3> tut20:start(s2@kosken).
Pong received ping
<3820.41.0>
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
This is a slight modification of the ping pong program where both processes are
spawned from the same start/1 function, and the "ping" process can be spawned
on a separate node. Notice the use of the link BIF. "Ping" calls
exit(ping) when it finishes and this causes an exit signal to be
sent to "pong", which also terminates.
It is possible to modify the default behaviour of a process so that it does not
get killed when it receives abnormal exit signals. Instead, all signals are
turned into normal messages on the format {'EXIT',FromPID,Reason} and added to
the end of the receiving process' message queue. This behaviour is set by:
process_flag(trap_exit, true)
There are several other process flags, see erlang(3).
Changing the default behaviour of a process in this way is usually not done in
standard user programs, but is left to the supervisory programs in OTP. However,
the ping pong program is modified to illustrate exit trapping.
-module(tut21).

-export([start/1, ping/2, pong/0]).

ping(N, Pong_Pid) ->
 link(Pong_Pid),
 ping1(N, Pong_Pid).

ping1(0, _) ->
 exit(ping);

ping1(N, Pong_Pid) ->
 Pong_Pid ! {ping, self()},
 receive
 pong ->
 io:format("Ping received pong~n", [])
 end,
 ping1(N - 1, Pong_Pid).

pong() ->
 process_flag(trap_exit, true),
 pong1().

pong1() ->
 receive
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong1();
 {'EXIT', From, Reason} ->
 io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
 end.

start(Ping_Node) ->
 PongPID = spawn(tut21, pong, []),
 spawn(Ping_Node, tut21, ping, [3, PongPID]).
(s1@bill)1> tut21:start(s2@gollum).
<3820.39.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
pong exiting, got {'EXIT',<3820.39.0>,ping}

 The Larger Example with Robustness Added

Let us return to the messenger program and add changes to make it more robust:
%%% Message passing utility.
%%% User interface:
%%% login(Name)
%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.
%%% logoff()
%%% Logs off anybody at that node
%%% message(ToName, Message)
%%% sends Message to ToName. Error messages if the user of this
%%% function is not logged on or if ToName is not logged on at
%%% any node.
%%%
%%% One node in the network of Erlang nodes runs a server which maintains
%%% data about the logged on users. The server is registered as "messenger"
%%% Each node where there is a user logged on runs a client process registered
%%% as "mess_client"
%%%
%%% Protocol between the client processes and the server
%%% --
%%%
%%% To server: {ClientPid, logon, UserName}
%%% Reply {messenger, stop, user_exists_at_other_node} stops the client
%%% Reply {messenger, logged_on} logon was successful
%%%
%%% When the client terminates for some reason
%%% To server: {'EXIT', ClientPid, Reason}
%%%
%%% To server: {ClientPid, message_to, ToName, Message} send a message
%%% Reply: {messenger, stop, you_are_not_logged_on} stops the client
%%% Reply: {messenger, receiver_not_found} no user with this name logged on
%%% Reply: {messenger, sent} Message has been sent (but no guarantee)
%%%
%%% To client: {message_from, Name, Message},
%%%
%%% Protocol between the "commands" and the client
%%% --
%%%
%%% Started: messenger:client(Server_Node, Name)
%%% To client: logoff
%%% To client: {message_to, ToName, Message}
%%%
%%% Configuration: change the server_node() function to return the
%%% name of the node where the messenger server runs

-module(messenger).
-export([start_server/0, server/0,
 logon/1, logoff/0, message/2, client/2]).

%%% Change the function below to return the name of the node where the
%%% messenger server runs
server_node() ->
 messenger@super.

%%% This is the server process for the "messenger"
%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server() ->
 process_flag(trap_exit, true),
 server([]).

server(User_List) ->
 receive
 {From, logon, Name} ->
 New_User_List = server_logon(From, Name, User_List),
 server(New_User_List);
 {'EXIT', From, _} ->
 New_User_List = server_logoff(From, User_List),
 server(New_User_List);
 {From, message_to, To, Message} ->
 server_transfer(From, To, Message, User_List),
 io:format("list is now: ~p~n", [User_List]),
 server(User_List)
 end.

%%% Start the server
start_server() ->
 register(messenger, spawn(messenger, server, [])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->
 %% check if logged on anywhere else
 case lists:keymember(Name, 2, User_List) of
 true ->
 From ! {messenger, stop, user_exists_at_other_node}, %reject logon
 User_List;
 false ->
 From ! {messenger, logged_on},
 link(From),
 [{From, Name} | User_List] %add user to the list
 end.

%%% Server deletes a user from the user list
server_logoff(From, User_List) ->
 lists:keydelete(From, 1, User_List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->
 %% check that the user is logged on and who he is
 case lists:keysearch(From, 1, User_List) of
 false ->
 From ! {messenger, stop, you_are_not_logged_on};
 {value, {_, Name}} ->
 server_transfer(From, Name, To, Message, User_List)
 end.

%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->
 %% Find the receiver and send the message
 case lists:keysearch(To, 2, User_List) of
 false ->
 From ! {messenger, receiver_not_found};
 {value, {ToPid, To}} ->
 ToPid ! {message_from, Name, Message},
 From ! {messenger, sent}
 end.

%%% User Commands
logon(Name) ->
 case whereis(mess_client) of
 undefined ->
 register(mess_client,
 spawn(messenger, client, [server_node(), Name]));
 _ -> already_logged_on
 end.

logoff() ->
 mess_client ! logoff.

message(ToName, Message) ->
 case whereis(mess_client) of % Test if the client is running
 undefined ->
 not_logged_on;
 _ -> mess_client ! {message_to, ToName, Message},
 ok
end.

%%% The client process which runs on each user node
client(Server_Node, Name) ->
 {messenger, Server_Node} ! {self(), logon, Name},
 await_result(),
 client(Server_Node).

client(Server_Node) ->
 receive
 logoff ->
 exit(normal);
 {message_to, ToName, Message} ->
 {messenger, Server_Node} ! {self(), message_to, ToName, Message},
 await_result();
 {message_from, FromName, Message} ->
 io:format("Message from ~p: ~p~n", [FromName, Message])
 end,
 client(Server_Node).

%%% wait for a response from the server
await_result() ->
 receive
 {messenger, stop, Why} -> % Stop the client
 io:format("~p~n", [Why]),
 exit(normal);
 {messenger, What} -> % Normal response
 io:format("~p~n", [What])
 after 5000 ->
 io:format("No response from server~n", []),
 exit(timeout)
 end.
The following changes are added:
The messenger server traps exits. If it receives an exit signal,
{'EXIT',From,Reason}, this means that a client process has terminated or is
unreachable for one of the following reasons:
	The user has logged off (the "logoff" message is removed).
	The network connection to the client is broken.
	The node on which the client process resides has gone down.
	The client processes has done some illegal operation.

If an exit signal is received as above, the tuple {From,Name} is deleted from
the servers User_List using the server_logoff function. If the node on which
the server runs goes down, an exit signal (automatically generated by the
system) is sent to all of the client processes:
{'EXIT',MessengerPID,noconnection} causing all the client processes to
terminate.
Also, a time-out of five seconds has been introduced in the await_result
function. That is, if the server does not reply within five seconds (5000 ms),
the client terminates. This is only needed in the logon sequence before the
client and the server are linked.
An interesting case is if the client terminates before the server links to it.
This is taken care of because linking to a non-existent process causes an exit
signal, {'EXIT',From,noproc}, to be automatically generated. This is as if the
process terminated immediately after the link operation.

Records and Macros

Larger programs are usually written as a collection of files with a well-defined
interface between the various parts.

 The Larger Example Divided into Several Files

To illustrate this, the messenger example from the previous section is divided
into the following five files:
	mess_config.hrl
Header file for configuration data

	mess_interface.hrl
Interface definitions between the client and the messenger

	user_interface.erl
Functions for the user interface

	mess_client.erl
Functions for the client side of the messenger

	mess_server.erl
Functions for the server side of the messenger

While doing this, the message passing interface between the shell, the client,
and the server is cleaned up and is defined using records. Also, macros are
introduced:
%%%----FILE mess_config.hrl----

%%% Configure the location of the server node,
-define(server_node, messenger@super).

%%%----END FILE----
%%%----FILE mess_interface.hrl----

%%% Message interface between client and server and client shell for
%%% messenger program

%%%Messages from Client to server received in server/1 function.
-record(logon,{client_pid, username}).
-record(message,{client_pid, to_name, message}).
%%% {'EXIT', ClientPid, Reason} (client terminated or unreachable.

%%% Messages from Server to Client, received in await_result/0 function
-record(abort_client,{message}).
%%% Messages are: user_exists_at_other_node,
%%% you_are_not_logged_on
-record(server_reply,{message}).
%%% Messages are: logged_on
%%% receiver_not_found
%%% sent (Message has been sent (no guarantee)
%%% Messages from Server to Client received in client/1 function
-record(message_from,{from_name, message}).

%%% Messages from shell to Client received in client/1 function
%%% spawn(mess_client, client, [server_node(), Name])
-record(message_to,{to_name, message}).
%%% logoff

%%%----END FILE----
%%%----FILE user_interface.erl----

%%% User interface to the messenger program
%%% login(Name)
%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.

%%% logoff()
%%% Logs off anybody at that node

%%% message(ToName, Message)
%%% sends Message to ToName. Error messages if the user of this
%%% function is not logged on or if ToName is not logged on at
%%% any node.

-module(user_interface).
-export([logon/1, logoff/0, message/2]).
-include("mess_interface.hrl").
-include("mess_config.hrl").

logon(Name) ->
 case whereis(mess_client) of
 undefined ->
 register(mess_client,
 spawn(mess_client, client, [?server_node, Name]));
 _ -> already_logged_on
 end.

logoff() ->
 mess_client ! logoff.

message(ToName, Message) ->
 case whereis(mess_client) of % Test if the client is running
 undefined ->
 not_logged_on;
 _ -> mess_client ! #message_to{to_name=ToName, message=Message},
 ok
end.

%%%----END FILE----
%%%----FILE mess_client.erl----

%%% The client process which runs on each user node

-module(mess_client).
-export([client/2]).
-include("mess_interface.hrl").

client(Server_Node, Name) ->
 {messenger, Server_Node} ! #logon{client_pid=self(), username=Name},
 await_result(),
 client(Server_Node).

client(Server_Node) ->
 receive
 logoff ->
 exit(normal);
 #message_to{to_name=ToName, message=Message} ->
 {messenger, Server_Node} !
 #message{client_pid=self(), to_name=ToName, message=Message},
 await_result();
 {message_from, FromName, Message} ->
 io:format("Message from ~p: ~p~n", [FromName, Message])
 end,
 client(Server_Node).

%%% wait for a response from the server
await_result() ->
 receive
 #abort_client{message=Why} ->
 io:format("~p~n", [Why]),
 exit(normal);
 #server_reply{message=What} ->
 io:format("~p~n", [What])
 after 5000 ->
 io:format("No response from server~n", []),
 exit(timeout)
 end.

%%%----END FILE---
%%%----FILE mess_server.erl----

%%% This is the server process of the messenger service

-module(mess_server).
-export([start_server/0, server/0]).
-include("mess_interface.hrl").

server() ->
 process_flag(trap_exit, true),
 server([]).

%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server(User_List) ->
 io:format("User list = ~p~n", [User_List]),
 receive
 #logon{client_pid=From, username=Name} ->
 New_User_List = server_logon(From, Name, User_List),
 server(New_User_List);
 {'EXIT', From, _} ->
 New_User_List = server_logoff(From, User_List),
 server(New_User_List);
 #message{client_pid=From, to_name=To, message=Message} ->
 server_transfer(From, To, Message, User_List),
 server(User_List)
 end.

%%% Start the server
start_server() ->
 register(messenger, spawn(?MODULE, server, [])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->
 %% check if logged on anywhere else
 case lists:keymember(Name, 2, User_List) of
 true ->
 From ! #abort_client{message=user_exists_at_other_node},
 User_List;
 false ->
 From ! #server_reply{message=logged_on},
 link(From),
 [{From, Name} | User_List] %add user to the list
 end.

%%% Server deletes a user from the user list
server_logoff(From, User_List) ->
 lists:keydelete(From, 1, User_List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->
 %% check that the user is logged on and who he is
 case lists:keysearch(From, 1, User_List) of
 false ->
 From ! #abort_client{message=you_are_not_logged_on};
 {value, {_, Name}} ->
 server_transfer(From, Name, To, Message, User_List)
 end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->
 %% Find the receiver and send the message
 case lists:keysearch(To, 2, User_List) of
 false ->
 From ! #server_reply{message=receiver_not_found};
 {value, {ToPid, To}} ->
 ToPid ! #message_from{from_name=Name, message=Message},
 From ! #server_reply{message=sent}
 end.

%%%----END FILE---

 Header Files

As shown above, some files have extension .hrl. These are header files that
are included in the .erl files by:
-include("File_Name").
for example:
-include("mess_interface.hrl").
In the case above the file is fetched from the same directory as all the other
files in the messenger example. (manual).
.hrl files can contain any valid Erlang code but are most often used for record
and macro definitions.

 Records

A record is defined as:
-record(name_of_record,{field_name1, field_name2, field_name3,}).
For example:
-record(message_to,{to_name, message}).
This is equivalent to:
{message_to, To_Name, Message}
Creating a record is best illustrated by an example:
#message_to{message="hello", to_name=fred)
This creates:
{message_to, fred, "hello"}
Notice that you do not have to worry about the order you assign values to the
various parts of the records when you create it. The advantage of using records
is that by placing their definitions in header files you can conveniently define
interfaces that are easy to change. For example, if you want to add a new field
to the record, you only have to change the code where the new field is used and
not at every place the record is referred to. If you leave out a field when
creating a record, it gets the value of the atom undefined. (manual)
Pattern matching with records is very similar to creating records. For example,
inside a case or receive:
#message_to{to_name=ToName, message=Message} ->
This is the same as:
{message_to, ToName, Message}

 Macros

Another thing that has been added to the messenger is a macro. The file
mess_config.hrl contains the definition:
%%% Configure the location of the server node,
-define(server_node, messenger@super).
This file is included in mess_server.erl:
-include("mess_config.hrl").
Every occurrence of ?server_node in mess_server.erl is now replaced by
messenger@super.
A macro is also used when spawning the server process:
spawn(?MODULE, server, [])
This is a standard macro (that is, defined by the system, not by the user).
?MODULE is always replaced by the name of the current module (that is, the
-module definition near the start of the file). There are more advanced ways
of using macros with, for example, parameters.
The three Erlang (.erl) files in the messenger example are individually
compiled into object code file (.beam). The Erlang system loads and links
these files into the system when they are referred to during execution of the
code. In this case, they are simply put in our current working directory (that
is, the place you have done "cd" to). There are ways of putting the .beam
files in other directories.
In the messenger example, no assumptions have been made about what the message
being sent is. It can be any valid Erlang term.

System Principles

 Starting the System

An Erlang runtime system is started with command erl:
% erl
Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]

Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
1>
erl understands a number of command-line arguments; see
erl in the ERTS application. Some arguments are
also described in this chapter.
Application programs can access the values of the command-line arguments by
calling one of the following functions:
	init:get_argument(Key)
	init:get_arguments()
	init:get_plain_arguments()

 Restarting and Stopping the System

The runtime system is halted by calling
halt/0,1,2.
Module init contains functions for restarting, rebooting, and stopping the
runtime system:
	init:restart()
	init:reboot()
	init:stop()

The runtime system terminates if the Erlang shell is terminated.

 Boot Scripts

The runtime system is started using a boot script. The boot script contains
instructions on which code to load and which processes and applications to
start.
A boot script file has the extension .script. The runtime system uses a binary
version of the script. This binary boot script file has the extension .boot.
Which boot script to use is specified by the command-line flag -boot. The
extension .boot is to be omitted. For example, using the boot script
start_all.boot:
% erl -boot start_all
If no boot script is specified, it defaults to ROOT/bin/start, where
ROOT is the installation directory of Erlang/OTP. See Default Boot
Scripts.
When the command-line flag -init_debug is used, the init process will
output debug information while interpreting the boot script.
% erl -init_debug
{progress,preloaded}
{progress,kernel_load_completed}
{progress,modules_loaded}
{start,heart}
{start,logger}
 .
 .
 .
For a detailed description of the syntax and contents of the boot script, see
script in the SASL application.

 Default Boot Scripts

Erlang/OTP comes with these boot scripts:
	start_clean.boot - Loads the code for and starts the applications Kernel
and STDLIB.
	start_sasl.boot - Loads the code for and starts the applications Kernel,
STDLIB, and SASL.
	no_dot_erlang.boot - Loads the code for and starts the applications Kernel
and STDLIB. Skips loading the file .erlang. Useful for scripts and other
tools that are to behave the same irrespective of user preferences.

Which of start_clean and start_sasl to use as default is decided by the user
when installing Erlang/OTP using Install. The user is asked:
Do you want to use a minimal system startup instead of the SASL startup?
If the answer is yes, start_clean is used, otherwise start_sasl is
used. The chosen boot script is copied and renamed as start.boot,
then placed into directory ROOT/bin.

 User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. This
is true especially when running Erlang in embedded mode; see
Code Loading Strategy.
While it is possible to manually create a boot script, it is
preferable to generate it from a release resource file called
Name.rel using the function
systools:make_script/1,2.
This requires that the source code is structured as applications
according to the OTP design principles.
For more information about .rel files, see
OTP Design Principles and the
rel page in SASL.
To generate the binary boot script file Name.boot the boot script file
Name.script, use the
systools:script2boot(File)
function.

 Code Loading Strategy

The runtime system can be started in either embedded or interactive mode.
Which one is decided by the command-line flag -mode:
% erl -mode embedded
The default mode is interactive. If more than one -mode flag is given,
the first one will be used.
The mode properties are as follows:
	In embedded mode, all code is loaded during system startup according
to the boot script. (Code can be loaded later by explicitly
ordering the code server to load it.)

	In interactive mode, code is dynamically loaded when first required,
which means that when an attempt is made to call a function in a
module that is not loaded, the code server searches the code path
and loads the module into the system.

Initially, the code path consists of the current working directory and
all object code directories under ROOT/lib, where ROOT is the
installation directory of Erlang/OTP. Directories can be named
Name[-Vsn], where the -Vsn suffix is optional. By default, the
code server chooses the directory with the highest version number
among those which have the same Name. If an ebin directory exists
under the Name[-Vsn] directory, this directory is added to the code
path.
The code path can be extended by using the command-line flags -pa Directories
and -pz Directories. These add Directories to the head or the end of the
code path, respectively. Example:
% erl -pa /home/arne/mycode
The code module contains a number of functions for modifying and
querying the search path.

 File Types

The following file types are defined in Erlang/OTP:
	File Type	File Name/Extension	Documented in
	Module	.erl	Erlang Reference Manual
	Include file	.hrl	Erlang Reference Manual
	Release resource file	.rel	rel in SASL
	Application resource file	.app	app in Kernel
	Boot script	.script	script in SASL
	Binary boot script	.boot	-
	Configuration file	.config	config in Kernel
	Application upgrade file	.appup	appup in SASL
	Release upgrade file	relup	relup in SASL

Table: File Types

Error Logging

 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process
terminating because of an uncaught error exception, is by default written to
the terminal (TTY):
=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{m,f,1},{shell,eval_loop,2}]}
The error information is handled by Logger, which is part of the Kernel
application.
The exit reasons (such as badarg) used by the runtime system are described in
Errors and Error Handling.
For information about Logger and its user interface, see the logger manual
page and the Logging section in the Kernel
User's Guide. The system can be configured so that log events are written to
file or to the TTY, or both. In addition, user-defined applications can send and
format log events using Logger.

 Log events from OTP behaviours

The standard behaviours (supervisor, gen_server, and so on) send progress
and error information to Logger. Progress reports are by default not logged, but
can be enabled by setting the primary log level to info, for example by using
the Kernel configuration parameter logger_level. Supervisor reports, crash
reports and other error and information reports are by default logged through
the log handler which is set up when the Kernel application is started.
Prior to Erlang/OTP 21.0, supervisor, crash, and progress reports were only
logged when the SASL application was running. This behaviour can, for backwards
compatibility, be enabled by setting the Kernel configuration parameter
logger_sasl_compatible to
true. For more information, see
SASL Error Logging in the SASL User's Guide.
% erl -kernel logger_level info
Erlang/OTP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

=PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
 application: kernel
 started_at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
 application: stdlib
 started_at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
 supervisor: {local,kernel_safe_sup}
 started: [{pid,<0.74.0>},
 {id,disk_log_sup},
 {mfargs,{disk_log_sup,start_link,[]}},
 {restart_type,permanent},
 {shutdown,1000},
 {child_type,supervisor}]
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
 supervisor: {local,kernel_safe_sup}
 started: [{pid,<0.75.0>},
 {id,disk_log_server},
 {mfargs,{disk_log_server,start_link,[]}},
 {restart_type,permanent},
 {shutdown,2000},
 {child_type,worker}]
Eshell V10.0 (abort with ^G)
1>

Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install
Erlang/OTP somewhere, install the application-specific code somewhere else, and
then start the Erlang runtime system, making sure the code path includes the
application-specific code.
It is often not desirable to use an Erlang/OTP system as is. A developer can
create new Erlang/OTP-compliant applications for a particular purpose, and
several original Erlang/OTP applications can be irrelevant for the purpose in
question. Thus, there is a need to be able to create a new system based on a
given Erlang/OTP system, where dispensable applications are removed and new
applications are included. Documentation and source code is irrelevant and is
therefore not included in the new system.
This chapter is about creating such a system, which is called a target system.
The following sections deal with target systems with different requirements of
functionality:
	A basic target system that can be started by calling the ordinary erl
script.
	A simple target system that also supports code replacement in runtime.
	An embedded target system that also supports starting automatically
at boot time, and logging output from the system files for later inspection.

Here is only considered the case when Erlang/OTP is running on a UNIX system.
The sasl application includes the example Erlang module target_system.erl,
which contains functions for creating and installing a target system. This
module is used in the following examples. The source code of the module is
listed in
Listing of target_system.erl

 Creating a Target System

It is assumed that you have a working Erlang/OTP system structured according to
the OTP design principles.
Step 1. Create a .rel file (see the rel(4) manual page in
SASL), which specifies the ERTS version and lists all applications that are to
be included in the new basic target system. An example is the following
mysystem.rel file:
%% mysystem.rel
{release,
 {"MYSYSTEM", "FIRST"},
 {erts, "5.10.4"},
 [{kernel, "2.16.4"},
 {stdlib, "1.19.4"},
 {sasl, "2.3.4"},
 {pea, "1.0"}]}.
The listed applications are not only original Erlang/OTP applications but
possibly also new applications that you have written (here exemplified by the
application Pea (pea)).
Step 2. Start Erlang/OTP from the directory where the mysystem.rel file
resides:
% erl -pa /home/user/target_system/myapps/pea-1.0/ebin
The -pa argument prepends the path to the ebin directory for
the Pea application to the code path.
Step 3. Create the target system:
1> target_system:create("mysystem").
The function target_system:create/1 performs the following:
	Reads the file mysystem.rel and creates a new file plain.rel.
The new file is identical to the original, except that it only
lists the Kernel and STDLIB applications.

	From the files mysystem.rel and plain.rel creates the files
mysystem.script, mysystem.boot, plain.script, and plain.boot
by calling systools:make_script/2.

	Creates the file mysystem.tar.gz by calling systools:make_tar/2. That
file has the following contents:

erts-5.10.4/bin/
releases/FIRST/start.boot
releases/FIRST/mysystem.rel
releases/mysystem.rel
lib/kernel-2.16.4/
lib/stdlib-1.19.4/
lib/sasl-2.3.4/
lib/pea-1.0/
The file releases/FIRST/start.boot is a copy of our mysystem.boot
The release resource file mysystem.rel is duplicated in the tar file.
Originally, this file was only stored in the releases directory to make it
possible for the release_handler to extract this file separately. After
unpacking the tar file, release_handler would automatically copy the file to
releases/FIRST. However, sometimes the tar file is unpacked without involving
the release_handler (for example, when unpacking the first target system).
Hence, the file is now duplicated within the tar archive, eliminating the
need for manual copying.
	Creates the temporary directory tmp and extracts the tar file
mysystem.tar.gz into that directory.
	Deletes the files erl and start from tmp/erts-5.10.4/bin. These files
are created again from source when installing the release.
	Creates the directory tmp/bin.
	Copies the previously created file plain.boot to tmp/bin/start.boot.
	Copies the files epmd, run_erl, and to_erl from the directory
tmp/erts-5.10.4/bin to the directory tmp/bin.
	Creates the directory tmp/log, which is used if the system is started as
embedded with the bin/start script.
	Creates the file tmp/releases/start_erl.data with the contents "5.10.4
FIRST". This file is to be passed as data file to the start_erl script.
	Recreates the file mysystem.tar.gz from the directories in the directory
tmp and removes tmp.

 Installing a Target System

Step 4. Install the created target system in a suitable directory.
2> target_system:install("mysystem", "/usr/local/erl-target").
The function target_system:install/2 performs the following:
	Extracts the tar file mysystem.tar.gz into the target directory
/usr/local/erl-target.
	In the target directory reads the file releases/start_erl.data to find the
Erlang runtime system version ("5.10.4").
	Substitutes %FINAL_ROOTDIR% and %EMU% for /usr/local/erl-target and
beam, respectively, in the files erl.src, start.src, and
start_erl.src of the target erts-5.10.4/bin directory, and puts the
resulting files erl, start, and run_erl in the target bin directory.
	Finally the target releases/RELEASES file is created from data in the file
releases/mysystem.rel.

 Starting a Target System

Now we have a target system that can be started in various ways. We start it as
a basic target system by invoking:
% /usr/local/erl-target/bin/erl
Here only the Kernel and STDLIB applications are started, that is, the system is
started as an ordinary development system. Only two files are needed for all
this to work:
	bin/erl (obtained from erts-5.10.4/bin/erl.src)
	bin/start.boot (a copy of plain.boot)

We can also start a distributed system (requires bin/epmd).
To start all applications specified in the original mysystem.rel file, use
flag -boot as follows:
% /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start
We start a simple target system as above. The only difference is that also the
file releases/RELEASES is present for code replacement in runtime to work.
To start an embedded target system, the shell script bin/start is used. The
script calls bin/run_erl, which in turn calls bin/start_erl (roughly,
start_erl is an embedded variant of erl).
The shell script start, which is generated from erts-5.10.4/bin/start.src
during installation, is merely an example. Edit it to suite your needs. Typically
it is executed when the UNIX system boots.
run_erl is a wrapper that provides logging of output from the runtime system
to file. It also provides a simple mechanism for attaching to the Erlang shell
(to_erl).
start_erl requires:
	The root directory ("/usr/local/erl-target")
	The releases directory ("/usr/local/erl-target/releases"
	The location of the file start_erl.data

It performs the following:
	Reads the runtime system version ("5.10.4") and release version ("FIRST")
from the file start_erl.data.
	Starts the runtime system of the version found.
	Provides the flag -boot specifying the boot file of the release version
found ("releases/FIRST/start.boot").

start_erl also assumes that there is sys.config in the release version
directory ("releases/FIRST/sys.config"). That is the topic of the next
section.
The start_erl shell script is normally not to be altered by the user.

 System Configuration Parameters

As was mentioned in the previous section, start_erl requires a sys.config in
the release version directory ("releases/FIRST/sys.config"). If there is no
such file, the system start fails. Such a file must therefore also be added.
If you have system configuration data that is neither file-location-dependent
nor site-dependent, it can be convenient to create sys.config early, so it
becomes part of the target system tar file created by target_system:create/1.
In fact, if you in the current directory create not only the file
mysystem.rel, but also file sys.config, the latter file is tacitly put in
the appropriate directory.
However, it can also be convenient to replace variables in within a sys.config
on the target after unpacking but before running the release. If you have a
sys.config.src it will be included and is not required to be a valid Erlang
term file like sys.config. Before running the release you must have a valid
sys.config in the same directory, so using sys.config.src requires having
some tool to populate what is needed and write sys.config to disk before
booting the release.

 Differences From the Install Script

The previous install/2 procedure differs somewhat from that of the ordinary
Install shell script. In fact, create/1 makes the release package as
complete as possible, and leave to the install/2 procedure to finish by only
considering location-dependent files.

 Creating the Next Version

In this example the Pea application has been changed, and so are the
applications ERTS, Kernel, STDLIB and SASL.
Step 1. Create the file .rel:
%% mysystem2.rel
{release,
 {"MYSYSTEM", "SECOND"},
 {erts, "6.0"},
 [{kernel, "3.0"},
 {stdlib, "2.0"},
 {sasl, "2.4"},
 {pea, "2.0"}]}.
Step 2. Create the application upgrade file (see
appup in SASL) for Pea, for example:
%% pea.appup
{"2.0",
 [{"1.0",[{load_module,pea_lib}]}],
 [{"1.0",[{load_module,pea_lib}]}]}.
Step 3. From the directory where the file mysystem2.rel resides, start the
Erlang/OTP system, giving the path to the new version of Pea:
% erl -pa /home/user/target_system/myapps/pea-2.0/ebin
Step 4. Create the release upgrade file (see relup
in SASL):
1> systools:make_relup("mysystem2",["mysystem"],["mysystem"],
 [{path,["/home/user/target_system/myapps/pea-1.0/ebin",
 "/my/old/erlang/lib/*/ebin"]}]).
Here "mysystem" is the base release and "mysystem2" is the release to
upgrade to.
The path option is used for pointing out the old version of all applications.
(The new versions are already in the code path - assuming of course that the
Erlang node on which this is executed is running the correct version of
Erlang/OTP.)
Step 5. Create the new release:
2> target_system:create("mysystem2").
Given that the file relup generated in Step 4 is now located in the current
directory, it is automatically included in the release package.

 Upgrading the Target System

This part is done on the target node, and for this example we want the node to
be running as an embedded system with the -heart option, allowing automatic
restart of the node. For more information, see
Starting a Target System.
We add -heart to bin/start:
#!/bin/sh
ROOTDIR=/usr/local/erl-target/

if [-z "$RELDIR"]
then
 RELDIR=$ROOTDIR/releases
fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start_erl $ROOTDIR\
$RELDIR $START_ERL_DATA -heart"
We use the simplest possible sys.config, which we store in releases/FIRST:
%% sys.config
[].
Finally, to prepare the upgrade, we must put the new release package in the
releases directory of the first target system:
% cp mysystem2.tar.gz /usr/local/erl-target/releases
Assuming that the node has been started as follows:
% /usr/local/erl-target/bin/start
It can be accessed as follows:
% /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.1
Logs can be found in /usr/local/erl-target/log. This directory is specified as
an argument to run_erlin the start script listed above.
Step 1. Unpack the release:
1> {ok,Vsn} = release_handler:unpack_release("mysystem2").
Step 2. Install the release:
2> release_handler:install_release(Vsn).
{continue_after_restart,"FIRST",[]}
heart: Tue Apr 1 12:15:10 2014: Erlang has closed.
heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/new_start_erl.data" -> 0. Terminating.
[End]
The above return value and output after the call to
release_handler:install_release/1 means that the release_handler has
restarted the node by using heart. This is always done when the upgrade
involves a change of the applications ERTS, Kernel, STDLIB, or SASL. For more
information, see Upgrade when Erlang/OTP has Changed.
The node is accessible through a new pipe:
% /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2
List the available releases in the system:
1> release_handler:which_releases().
[{"MYSYSTEM","SECOND",
 ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
 current},
 {"MYSYSTEM","FIRST",
 ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
 permanent}]
Our new release, "SECOND", is now the current release, but we can also see that
our "FIRST" release is still permanent. This means that if the node would be
restarted now, it would come up running the "FIRST" release again.
Step 3. Make the new release permanent:
2> release_handler:make_permanent("SECOND").
Check the releases again:
3> release_handler:which_releases().
[{"MYSYSTEM","SECOND",
 ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
 permanent},
 {"MYSYSTEM","FIRST",
 ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
 old}]
We see that the new release version is permanent, so it would be safe to
restart the node.

 Listing of target_system.erl

This module can also be found in the examples directory of the SASL
application.

-module(target_system).
-export([create/1, create/2, install/2]).

%% Note: RelFileName below is the *stem* without trailing .rel,
%% .script etc.
%%

%% create(RelFileName)
%%
create(RelFileName) ->
 create(RelFileName,[]).

create(RelFileName,SystoolsOpts) ->
 RelFile = RelFileName ++ ".rel",
 Dir = filename:dirname(RelFileName),
 PlainRelFileName = filename:join(Dir,"plain"),
 PlainRelFile = PlainRelFileName ++ ".rel",
 io:fwrite("Reading file: ~ts ...~n", [RelFile]),
 {ok, [RelSpec]} = file:consult(RelFile),
 io:fwrite("Creating file: ~ts from ~ts ...~n",
 [PlainRelFile, RelFile]),
 {release,
 {RelName, RelVsn},
 {erts, ErtsVsn},
 AppVsns} = RelSpec,
 PlainRelSpec = {release,
 {RelName, RelVsn},
 {erts, ErtsVsn},
 lists:filter(fun({kernel, _}) ->
 true;
 ({stdlib, _}) ->
 true;
 (_) ->
 false
 end, AppVsns)
 },
 {ok, Fd} = file:open(PlainRelFile, [write]),
 io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
 file:close(Fd),

 io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
	 [PlainRelFileName,PlainRelFileName]),
 make_script(PlainRelFileName,SystoolsOpts),

 io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
 [RelFileName, RelFileName]),
 make_script(RelFileName,SystoolsOpts),

 TarFileName = RelFileName ++ ".tar.gz",
 io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
 make_tar(RelFileName,SystoolsOpts),

 TmpDir = filename:join(Dir,"tmp"),
 io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
 file:make_dir(TmpDir),

 io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
 extract_tar(TarFileName, TmpDir),

 TmpBinDir = filename:join([TmpDir, "bin"]),
 ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
 io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
 [ErtsBinDir]),
 file:delete(filename:join([ErtsBinDir, "erl"])),
 file:delete(filename:join([ErtsBinDir, "start"])),

 io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
 file:make_dir(TmpBinDir),

 io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
 [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
 copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),

 io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
 "~ts to ~ts ...~n",
 [ErtsBinDir, TmpBinDir]),
 copy_file(filename:join([ErtsBinDir, "epmd"]),
 filename:join([TmpBinDir, "epmd"]), [preserve]),
 copy_file(filename:join([ErtsBinDir, "run_erl"]),
 filename:join([TmpBinDir, "run_erl"]), [preserve]),
 copy_file(filename:join([ErtsBinDir, "to_erl"]),
 filename:join([TmpBinDir, "to_erl"]), [preserve]),

 %% This is needed if 'start' script created from 'start.src' shall
 %% be used as it points out this directory as log dir for 'run_erl'
 TmpLogDir = filename:join([TmpDir, "log"]),
 io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
 ok = file:make_dir(TmpLogDir),

 StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
 io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),
 StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
 write_file(StartErlDataFile, StartErlData),

 io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
	 [TarFileName,TmpDir]),
 {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
 %% {ok, Cwd} = file:get_cwd(),
 %% file:set_cwd("tmp"),
 ErtsDir = "erts-"++ErtsVsn,
 erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
 erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
 erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
 erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
 erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
 erl_tar:close(Tar),
 %% file:set_cwd(Cwd),
 io:fwrite("Removing directory ~ts ...~n",[TmpDir]),
 remove_dir_tree(TmpDir),
 ok.

install(RelFileName, RootDir) ->
 TarFile = RelFileName ++ ".tar.gz",
 io:fwrite("Extracting ~ts ...~n", [TarFile]),
 extract_tar(TarFile, RootDir),
 StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
 {ok, StartErlData} = read_txt_file(StartErlDataFile),
 [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
 ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
 BinDir = filename:join([RootDir, "bin"]),
 io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
 "form erl, start and start_erl ...\n"),
 subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,
 [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
 [preserve]),
 %%! Workaround for pre OTP 17.0: start.src and start_erl.src did
 %%! not have correct permissions, so the above 'preserve' option did not help
 ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
 ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),

 io:fwrite("Creating the RELEASES file ...\n"),
 create_RELEASES(RootDir, filename:join([RootDir, "releases",
					 filename:basename(RelFileName)])).

%% LOCALS

%% make_script(RelFileName,Opts)
%%
make_script(RelFileName,Opts) ->
 systools:make_script(RelFileName, [no_module_tests,
				 {outdir,filename:dirname(RelFileName)}
				 |Opts]).

%% make_tar(RelFileName,Opts)
%%
make_tar(RelFileName,Opts) ->
 RootDir = code:root_dir(),
 systools:make_tar(RelFileName, [{erts, RootDir},
				 {outdir,filename:dirname(RelFileName)}
				 |Opts]).

%% extract_tar(TarFile, DestDir)
%%
extract_tar(TarFile, DestDir) ->
 erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create_RELEASES(DestDir, RelFileName) ->
 release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").

subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
 lists:foreach(fun(Script) ->
 subst_src_script(Script, SrcDir, DestDir,
 Vars, Opts)
 end, Scripts).

subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
 subst_file(filename:join([SrcDir, Script ++ ".src"]),
 filename:join([DestDir, Script]),
 Vars, Opts).

subst_file(Src, Dest, Vars, Opts) ->
 {ok, Conts} = read_txt_file(Src),
 NConts = subst(Conts, Vars),
 write_file(Dest, NConts),
 case lists:member(preserve, Opts) of
 true ->
 {ok, FileInfo} = file:read_file_info(Src),
 file:write_file_info(Dest, FileInfo);
 false ->
 ok
 end.

%% subst(Str, Vars)
%% Vars = [{Var, Val}]
%% Var = Val = string()
%% Substitute all occurrences of %Var% for Val in Str, using the list
%% of variables in Vars.
%%
subst(Str, Vars) ->
 subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
 subst_var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
 subst_var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when C == $_ ->
 subst_var([C| Rest], Vars, Result, []);
subst([C| Rest], Vars, Result) ->
 subst(Rest, Vars, [C| Result]);
subst([], _Vars, Result) ->
 lists:reverse(Result).

subst_var([$%| Rest], Vars, Result, VarAcc) ->
 Key = lists:reverse(VarAcc),
 case lists:keysearch(Key, 1, Vars) of
 {value, {Key, Value}} ->
 subst(Rest, Vars, lists:reverse(Value, Result));
 false ->
 subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
 end;
subst_var([C| Rest], Vars, Result, VarAcc) ->
 subst_var(Rest, Vars, Result, [C| VarAcc]);
subst_var([], Vars, Result, VarAcc) ->
 subst([], Vars, [VarAcc ++ [$%| Result]]).

copy_file(Src, Dest) ->
 copy_file(Src, Dest, []).

copy_file(Src, Dest, Opts) ->
 {ok,_} = file:copy(Src, Dest),
 case lists:member(preserve, Opts) of
 true ->
 {ok, FileInfo} = file:read_file_info(Src),
 file:write_file_info(Dest, FileInfo);
 false ->
 ok
 end.

write_file(FName, Conts) ->
 Enc = file:native_name_encoding(),
 {ok, Fd} = file:open(FName, [write]),
 file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
 file:close(Fd).

read_txt_file(File) ->
 {ok, Bin} = file:read_file(File),
 {ok, binary_to_list(Bin)}.

remove_dir_tree(Dir) ->
 remove_all_files(".", [Dir]).

remove_all_files(Dir, Files) ->
 lists:foreach(fun(File) ->
 FilePath = filename:join([Dir, File]),
 case filelib:is_dir(FilePath) of
 true ->
 {ok, DirFiles} = file:list_dir(FilePath),
 remove_all_files(FilePath, DirFiles),
 file:del_dir(FilePath);
 _ ->
 file:delete(FilePath)
 end
 end, Files).

Upgrade when Erlang/OTP has Changed

 Introduction

As of Erlang/OTP 17, most applications deliver a valid application upgrade file
(appup). Many of the applications use the restart_application
instruction. These are applications for which it is not crucial to support real
soft upgrade, for example, tools and library applications. The
restart_application instruction ensures that all modules in the application
are reloaded and thereby running the new code.

 Upgrade of Core Applications

The core applications ERTS, Kernel, STDLIB, and SASL never allow real
soft upgrade, but require the Erlang runtime system to be
restarted. This is indicated to the release_handler by the upgrade
instruction restart_new_emulator. This instruction is always the
very first instruction executed, and it restarts the runtime system
with the new versions of the previously mentioned core applications
and the old versions of all other applications. When the node is back
up, all other upgrade instructions are executed, making sure each
application is finally running its new version.
It might seem strange to do a two-step upgrade instead of just
restarting the runtime system with the new version of all
applications. The reason for this design decision is to allow
code_change functions to have side effects, for example, changing
data on disk. It also guarantees that the upgrade mechanism for
non-core applications does not differ depending on whether or not core
applications are changed at the same time.
If, however, the more brutal variant is preferred, the release
upgrade file can be handwritten using only the single upgrade
instruction restart_emulator. This instruction, in contrast to
restart_new_emulator, causes the runtime system to restart with the
new versions of all applications.
Note: If other instructions are included before restart_emulator
in the handwritten relup file, they are executed in the old runtime
system. This is a big risk since there is no guarantee that new BEAM
code can be loaded into the old runtime system. Adding instructions
after restart_emulator has no effect as the release_handler will
not execute them.
For information about the release upgrade file, see
relup in SASL. For more information about
upgrade instructions, see appup in SASL.

 Applications that Still do Not Allow Code Upgrade

A few applications, such as Erl_interface, do not support upgrade. This is
indicated by an application upgrade file containing only {Vsn,[],[]}. Any
attempt at creating a release upgrade file with such input fails. The only way
to force an upgrade involving applications like this is to handwrite the file
relup, preferably as described above with only the restart_emulator
instruction.

Versions

 OTP Version

As of OTP release 17, the OTP release number corresponds to the major part of
the OTP version. The OTP version as a concept was introduced in OTP 17. The
version scheme used is described in detail in
Version Scheme.
OTP of a specific version is a set of applications of specific versions. The
application versions identified by an OTP version corresponds to application
versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can, however, be put together with applications from different OTP
versions. Such a combination of application versions has not been tested by the
Erlang/OTP team. It is therefore always preferred to use OTP applications from
one single OTP version.
Release candidates have an -rc<N> suffix. The suffix -rc0 is used during
development up to the first release candidate.

 Retrieving Current OTP Version

In an OTP source code tree, the OTP version can be read from the text file
<OTP source root>/OTP_VERSION. The absolute path to the file can be
constructed by calling
filename:join([code:root_dir(), "OTP_VERSION"]).
In an installed OTP development system, the OTP version can be read from the
text file <OTP installation root>/releases/<OTP release number>/OTP_VERSION.
The absolute path to the file can by constructed by calling
filename:join([code:root_dir(), "releases",erlang:system_info(otp_release), "OTP_VERSION"]).
If the version read from the OTP_VERSION file in a development system has a
** suffix, the system has been patched using the
otp_patch_apply tool. In this case, the
system consists of application versions from multiple OTP versions. The version
preceding the ** suffix corresponds to the OTP version of the base system that
has been patched. Note that if a development system is updated by other means
than otp_patch_apply, the file OTP_VERSION can identify an incorrect OTP
version.
No OTP_VERSION file is placed in a target system created
by OTP tools, because one can easily create a target system where it is hard
to even determine the base OTP version. However, it is allowed to place such
a file there if one knows the OTP version.

 OTP Versions Table

The text file <OTP source root>/otp_versions.table, which is part of the
source code, contains information about all OTP versions from OTP 17.0 up to the
current OTP version. Each line contains information about application versions
that are part of a specific OTP version, and has the following format:
<OtpVersion> : <ChangedAppVersions> # <UnchangedAppVersions> :
<OtpVersion> has the format OTP-<VSN>, that is, the same as the git tag used
to identify the source.
<ChangedAppVersions> and <UnchangedAppVersions> are space-separated lists of
application versions and has the format <application>-<vsn>.
	<ChangedAppVersions> corresponds to changed applications with new version
numbers in this OTP version.
	<UnchangedAppVersions> corresponds to unchanged application versions in this
OTP version.

Both of them can be empty, but not at the same time. If <ChangedAppVersions>
is empty, no changes have been made that change the build result of any
application. This could, for example, be a pure bug fix of the build system. The
order of lines is undefined. All white-space characters in this file are either
space (character 32) or line-break (character 10).
By using ordinary UNIX tools like sed and grep one can easily find answers
to various questions like:
	Which OTP versions are kernel-3.0 part of?
$ grep ' kernel-3\.0 ' otp_versions.table

	In which OTP version was kernel-3.0 introduced?
$ sed 's/#.*//;/ kernel-3\.0 /!d' otp_versions.table

The above commands give a bit more information than the exact answers, but
adequate information when manually searching for answers to these questions.

 Application Version

As of OTP 17.0 application versions use the same version
scheme as the OTP version, except that
application versions never include the -rc<N> suffix. Also
note that a major increment in an application version does not
necessarily imply a major increment of the OTP version. This depends
on whether the major change in the application is considered a
major change for OTP as a whole or not.

 Version Scheme

Change
The version scheme was changed as of OTP 17.0.
A list of application versions used in OTP 17.0
is included at the end of this section.
Normally, a version is constructed as <Major>.<Minor>.<Patch>, where
<Major> is the most significant part. However, versions with more than three
dot-separated parts are possible.
The dot-separated parts consist of non-negative integers. If all parts
less significant than <Minor> equals 0, they are omitted. The
three normal parts <Major>.<Minor>.<Patch> are changed as follows:
	<Major> - Increases when major changes, including incompatibilities, are
made.
	<Minor> - Increases when new functionality is added.
	<Patch> - Increases when pure bug fixes are made.

When a part in the version number increases, all less significant parts are set
to 0.
An application version or an OTP version identifies source code versions. That
is, it implies nothing about how the application or OTP has been built.

 Order of Versions

Version numbers in general are only partially ordered. However, normal version
numbers (with three parts) as of OTP 17.0 have a total or linear order. This
applies both to normal OTP versions and normal application versions.
When comparing two version numbers with a defined order, one compares
each part as standard integers, starting from the most significant
part and moving towards the less significant parts. The order is
determined by the first parts of the same significance that differ. A
larger OTP version encompasses all changes present in a smaller OTP
version. The same principle applies to application versions.
Versions can have more than three parts, resulting in partial
ordering. Such versions are only used when branching off from another
branch. When an extra part (apart from the normal three parts) is added to
a version number, a new branch of versions is made. The new branch has
a linear order against the base version. However, versions on
different branches have no order, and therefore one can only conclude
that they all include what is included in their closest common
ancestor. When branching multiple times from the same base version,
0 parts are added between the base version and the least significant
1 part until a unique version is found. Versions that have an order
can be compared as described in the previous paragraph.
An example of branched versions: The version 6.0.2.1 is a branched version
from the base version 6.0.2. Versions on the form 6.0.2.<X> can be compared
with normal versions smaller than or equal to 6.0.2, and other versions on the
form 6.0.2.<X>. The version 6.0.2.1 will include all changes in 6.0.2.
However, 6.0.3 will most likely not include all changes in 6.0.2.1 (note
that these versions have no order). A second branched version from the base
version 6.0.2 will be version 6.0.2.0.1, and a third branched version will
be 6.0.2.0.0.1.

 Releases and Patches

When a new OTP release is released it will have an OTP version on the form
<Major>.0 where the major OTP version number equals the release number. The
major version number is increased one step since the last major version. All
other OTP versions with the same major OTP version number are patches on that
OTP release.
Patches are either released as maintenance patch packages or emergency patch
packages. The only difference is that maintenance patch packages are planned and
usually contain more changes than emergency patch packages. Emergency patch
packages are released to solve one or more specific issues when such are
discovered.
The release of a maintenance patch package usually imply an increase
of the OTP <Minor> version, while the release of an emergency patch
package usually imply an increase of the OTP <Patch>
version. However, this is not always the case, as changes in OTP
versions are determined by actual code modifications rather than
whether the patch was planned or not. For more information see
Version Scheme.

 OTP Versions Tree

All released OTP versions can be found in the OTP Versions
Tree, which is
automatically updated whenever we release a new OTP version. Note that
each version number explicitly determines its position in the version
tree. All that is required to build the tree are the version numbers
themselves.
The root of the tree is OTP version 17.0 which is when we introduced the new
version scheme. The green versions are normal
versions released on the main track. Old
OTP releases will be maintained for a while
on maint branches that have branched off from the main track. Old maint
branches always branch off from the main track when the next OTP release is
introduced into the main track. Versions on these old maint branches are
marked blue.
Apart from the green and blue versions, there are also gray
versions. These denote versions established on branches to resolve a
particular issue for a specific customer based on a specific base
version. Branches with gray versions will typically become dead ends
very quickly if not immediately.

 OTP 17.0 Application Versions

The following list details the application versions that were part of
OTP 17.0.
If the normal part of an application version number is smaller than
the corresponding application version in the list, the version number
does not adhere to the versioning scheme introduced in OTP
17.0. Consequently, it is not regarded as having an order against
versions used from OTP 17.0 onwards.
	asn1-3.0
	common_test-1.8
	compiler-5.0
	cosEvent-2.1.15
	cosEventDomain-1.1.14
	cosFileTransfer-1.1.16
	cosNotification-1.1.21
	cosProperty-1.1.17
	cosTime-1.1.14
	cosTransactions-1.2.14
	crypto-3.3
	debugger-4.0
	dialyzer-2.7
	diameter-1.6
	edoc-0.7.13
	eldap-1.0.3
	erl_docgen-0.3.5
	erl_interface-3.7.16
	erts-6.0
	et-1.5
	eunit-2.2.7
	gs-1.5.16
	hipe-3.10.3
	ic-4.3.5
	inets-5.10
	jinterface-1.5.9
	kernel-3.0
	megaco-3.17.1
	mnesia-4.12
	observer-2.0
	odbc-2.10.20
	orber-3.6.27
	os_mon-2.2.15
	ose-1.0
	otp_mibs-1.0.9
	parsetools-2.0.11
	percept-0.8.9
	public_key-0.22
	reltool-0.6.5
	runtime_tools-1.8.14
	sasl-2.4
	snmp-4.25.1
	ssh-3.0.1
	ssl-5.3.4
	stdlib-2.0
	syntax_tools-1.6.14
	test_server-3.7
	tools-2.6.14
	typer-0.9.6
	webtool-0.8.10
	wx-1.2
	xmerl-1.3.7

Support, Compatibility, Deprecations, and Removal

 Introduction

This document describes the strategy regarding supported Releases,
compatibility, deprecations, and removal of functionality.
Change
This document and the strategy it describes was introduced in
Erlang/OTP 21.

 Supported Releases

In general, bugs are only fixed on the latest
release, and new features are introduced in
the upcoming release that is under development. However, when we, for
internal reasons, fix bugs on older releases, these will be available and
announced as well.
Pull requests are only accepted on the maint and the master
branches in our git repository. The
maint branch contains changes planned for the next maintenance
patch package on the latest OTP
release and the master branch contain changes planned for the
upcoming OTP release.

 Compatibility

We strive to remain as compatible as possible, even in cases where we
give no compatibility guarantees.
Different parts of the system will be handled differently regarding
compatibility. The following items describe how different parts of the system
are handled.
	Erlang Distribution - Erlang nodes can communicate across at least two
preceding and two subsequent releases.

	Compiled BEAM Code, NIF Libraries, and Drivers - Compiled code
can be loaded on at least two subsequent releases. To achive the
highest possible performance for Erlang code, ensure it is compiled
using the same release as the one it will be deployed on.
Loading on previous releases is not supported.

	APIs - Compatible between releases.

	Compiler Warnings - New warnings may be issued between releases.

	Command Line Arguments - Incompatible changes may occur between releases.

	OTP Build Procedures - Incompatible changes may occur between releases.

Under certain circumstances incompatible changes might be introduced even in
parts of the system that should be compatible between releases. Things that
might trigger incompatible changes like this are:
	Security Issues - It might be necessary to introduce incompatible changes
in order to solve a security issue. This kind of incompatibility might occur
in a patch.

	Bug Fixes - We will not be bug-compatible. A bug fix might introduce
incompatible changes. This kind of incompatibility might occur in a patch.

	Severe Previous Design Issues - Some parts of OTP were designed
a very long time ago and did not necessarily take today's computing
environments into account. Consequently, the ramifications of these
design choices can be quite significant, impacting performance,
scalability, and more. If we determine that these consequences are
too substantial, we may implement incompatible changes. Such changes
are never introduced in a patch, but in the subsequent release.

Peripheral, trace, and debug functionality is at greater risk of being changed
in an incompatible way than functionality in the language itself and core
libraries used during operation.
There is a page in the documentation regarding incompatibilities:
	Upcoming Potential Incompatibilities -
lists all upcoming potential incompatibilities.

 Deprecation

Deprecation of functionality occurs when newer, preferred alternatives
are introduced. The deprecation does not imply future removal of the
functionality unless an upcoming removal is explicitly stated in the
deprecation notice.
Deprecated functionality will be documented as deprecated and highlighted
in a release note as early possible. If appropriate, the compiler will
issue warnings when the deprecated functionality is used.
There is a page in the documentation regarding deprecations:
	Deprecations - lists all
deprecated functionality.

 Removal

It can become necessary to remove legacy solutions. In such instances,
they will be gradually phased out over a sufficient period to allow
users to adjust. Before functionality is removed, it will be
deprecated for at least one release, with an explicit announcement
about the upcoming removal.
Peripheral, trace, and debug functionality is at greater risk of removal than
functionality in the language itself and core libraries used during operation.
There are two pages in the documentation regarding removal:
	Scheduled for Removal - lists
all functionality that is schedule for removal in upcoming releases.

	Removed Functionality - lists
functionality that has been removed.

Overview

The OTP Design Principles define how to structure Erlang code in terms of
processes, modules, and directories.

 Supervision Trees

A basic concept in Erlang/OTP is the supervision tree. This is a process
structuring model based on the idea of workers and supervisors:
	Workers are processes that perform computations and other actual work.
	Supervisors are processes that monitor workers. A supervisor
can restart a worker if something goes wrong.
	The supervision tree is a hierarchical arrangement of code into supervisors
and workers, which makes it possible to design and program fault-tolerant
software.

In the following figure, square boxes represents supervisors and circles
represent workers:

title: Supervision Tree

flowchart
 sup1[Type 1 Supervisor] --- sup2[Type 1 Supervisor] --- worker1((worker))
 sup1 --- sup1a[Type A Supervisor]

 sup1a --- sup2a[Type A Supervisor] --- worker2((worker))
 sup1a --- sup3[Type 1 Supervisor]

 sup3 --- worker3((worker))
 sup3 --- worker4((worker))

 Behaviours

In a supervision tree, many of the processes have similar structures
and follow similar patterns. For example, the supervisors share a
similar structure, with the sole distinction lying in the child
processes they supervise. Many of the workers are servers in a
server-client relation, finite-state machines, or event handlers.
Behaviours are formalizations of these common patterns. The idea is to divide
the code for a process in a generic part (a behaviour module) and a specific
part (a callback module).
The behaviour module is part of Erlang/OTP. To implement a process such as a
supervisor, the user only needs to implement the callback module, which is to
export a pre-defined set of functions, the callback functions.
The following example illustrate how code can be divided into a generic and a
specific part. Consider the following code (written in plain Erlang) for a
simple server, which keeps track of a number of "channels". Other processes can
allocate and free the channels by calling the functions alloc/0 and free/1,
respectively.

-module(ch1).
-export([start/0]).
-export([alloc/0, free/1]).
-export([init/0]).

start() ->
 spawn(ch1, init, []).

alloc() ->
 ch1 ! {self(), alloc},
 receive
 {ch1, Res} ->
 Res
 end.

free(Ch) ->
 ch1 ! {free, Ch},
 ok.

init() ->
 register(ch1, self()),
 Chs = channels(),
 loop(Chs).

loop(Chs) ->
 receive
 {From, alloc} ->
 {Ch, Chs2} = alloc(Chs),
 From ! {ch1, Ch},
 loop(Chs2);
 {free, Ch} ->
 Chs2 = free(Ch, Chs),
 loop(Chs2)
 end.
The code for the server can be rewritten into a generic part server.erl:
-module(server).
-export([start/1]).
-export([call/2, cast/2]).
-export([init/1]).

start(Mod) ->
 spawn(server, init, [Mod]).

call(Name, Req) ->
 Name ! {call, self(), Req},
 receive
 {Name, Res} ->
 Res
 end.

cast(Name, Req) ->
 Name ! {cast, Req},
 ok.

init(Mod) ->
 register(Mod, self()),
 State = Mod:init(),
 loop(Mod, State).

loop(Mod, State) ->
 receive
 {call, From, Req} ->
 {Res, State2} = Mod:handle_call(Req, State),
 From ! {Mod, Res},
 loop(Mod, State2);
 {cast, Req} ->
 State2 = Mod:handle_cast(Req, State),
 loop(Mod, State2)
 end.
And a callback module ch2.erl:
-module(ch2).
-export([start/0]).
-export([alloc/0, free/1]).
-export([init/0, handle_call/2, handle_cast/2]).

start() ->
 server:start(ch2).

alloc() ->
 server:call(ch2, alloc).

free(Ch) ->
 server:cast(ch2, {free, Ch}).

init() ->
 channels().

handle_call(alloc, Chs) ->
 alloc(Chs). % => {Ch,Chs2}

handle_cast({free, Ch}, Chs) ->
 free(Ch, Chs). % => Chs2
Notice the following:
	The code in server can be reused to build many different servers.
	The server name, in this example the atom ch2, is hidden from the users of
the client functions. This means that the name can be changed without
affecting them.
	The protocol (messages sent to and received from the server) is also hidden.
This is good programming practice and allows one to change the protocol
without changing the code using the interface functions.
	The functionality of server can be extended without having to change ch2
or any other callback module.

In ch1.erl and ch2.erl above, the implementation of channels/0, alloc/1,
and free/2 has been intentionally left out, as it is not relevant to the
example. For completeness, one way to write these functions is given below. This
is an example only, a realistic implementation must be able to handle situations
like running out of channels to allocate, and so on.

channels() ->
 {_Allocated = [], _Free = lists:seq(1, 100)}.

alloc({Allocated, [H|T] = _Free}) ->
 {H, {[H|Allocated], T}}.

free(Ch, {Alloc, Free} = Channels) ->
 case lists:member(Ch, Alloc) of
 true ->
 {lists:delete(Ch, Alloc), [Ch|Free]};
 false ->
 Channels
 end.
Code written without using behaviours can be more efficient, but the increased
efficiency is at the expense of generality. The ability to manage all
applications in the system in a consistent manner is important.
Using behaviours also makes it easier to read and understand code written by
other programmers. Improvised programming structures, while possibly more
efficient, are always more difficult to understand.
The server module corresponds, greatly simplified, to the Erlang/OTP behaviour
gen_server.
The standard Erlang/OTP behaviours are:
	gen_server
For implementing the server of a client-server relation

	gen_statem
For implementing state machines

	gen_event
For implementing event handling functionality

	supervisor
For implementing a supervisor in a supervision tree

The compiler understands the module attribute -behaviour(Behaviour) and issues
warnings about missing callback functions, for example:
-module(chs3).
-behaviour(gen_server).
...

3> c(chs3).
./chs3.erl:10: Warning: undefined call-back function handle_call/3
{ok,chs3}

 Applications

Erlang/OTP comes with a number of components, each implementing some specific
functionality. Components are with Erlang/OTP terminology called applications.
Examples of Erlang/OTP applications are Mnesia, which has everything needed for
programming database services, and Debugger, which is used to debug Erlang
programs. The minimal system based on Erlang/OTP consists of the following two
applications:
	Kernel - Functionality necessary to run Erlang
	STDLIB - Erlang standard libraries

The application concept applies both to program structure (processes) and
directory structure (modules).
The simplest applications do not have any processes, but consist of a collection
of functional modules. Such an application is called a library application. An
example of a library application is STDLIB.
An application with processes is easiest implemented as a supervision tree using
the standard behaviours.
How to program applications is described in Applications.

 Releases

A release is a complete system made out from a subset of Erlang/OTP
applications and a set of user-specific applications.
How to program releases is described in Releases.
How to install a release in a target environment is described in
Creating and Upgrading a Target System in System Principles.

 Release Handling

Release handling is upgrading and downgrading between different versions of a
release, in a (possibly) running system. How to do this is described in
Release Handling.

gen_server Behaviour

It is recommended to read this section alongside gen_server in STDLIB.

 Client-Server Principles

The client-server model is characterized by a central server and an arbitrary
number of clients. The client-server model is used for resource management
operations, where several different clients want to share a common resource.
The server is responsible for managing this resource.

title: Client Server Model

flowchart LR
 client1((Client))
 client2((Client))
 client3((Client))
 server((Server))

 client1 --> server
 server -.-> client1

 client2 --> server
 server -.-> client2

 client3 --> server
 server -.-> client3

 subgraph Legend
 direction LR

 start1[] -->|Query| stop1[]
 style start1 height:0px;
 style stop1 height:0px;

 start2[] -.->|Reply| stop2[]
 style start2 height:0px;
 style stop2 height:0px;
 end

 Example

An example of a simple server written in plain Erlang is provided in
Overview. The server can be reimplemented using
gen_server, resulting in this callback module:

-module(ch3).
-behaviour(gen_server).

-export([start_link/0]).
-export([alloc/0, free/1]).
-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
 gen_server:start_link({local, ch3}, ch3, [], []).

alloc() ->
 gen_server:call(ch3, alloc).

free(Ch) ->
 gen_server:cast(ch3, {free, Ch}).

init(_Args) ->
 {ok, channels()}.

handle_call(alloc, _From, Chs) ->
 {Ch, Chs2} = alloc(Chs),
 {reply, Ch, Chs2}.

handle_cast({free, Ch}, Chs) ->
 Chs2 = free(Ch, Chs),
 {noreply, Chs2}.
The code is explained in the next sections.

 Starting a Gen_Server

In the example in the previous section, gen_server is started by calling
ch3:start_link():
start_link() ->
 gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}
start_link/0 calls function gen_server:start_link/4. This function
spawns and links to a new process, a gen_server.
	The first argument, {local, ch3}, specifies the name.
The gen_server is then locally registered as ch3.
If the name is omitted, the gen_server is not registered. Instead its pid
must be used. The name can also be given as {global, Name}, in which case
the gen_server is registered using global:register_name/2.

	The second argument, ch3, is the name of the callback module, which is
the module where the callback functions are located.
The interface functions (start_link/0, alloc/0, and free/1) are located
in the same module as the callback functions (init/1, handle_call/3, and
handle_cast/2). It is usually good programming practice to have the code
corresponding to one process contained in a single module.

	The third argument, [], is a term that is passed as is to the callback
function init. Here, init does not need any indata and ignores the
argument.

	The fourth argument, [], is a list of options. See gen_server
for the available options.

If name registration succeeds, the new gen_server process calls the callback
function ch3:init([]). init is expected to return {ok, State}, where
State is the internal state of the gen_server. In this case, the state is
the available channels.
init(_Args) ->
 {ok, channels()}.
gen_server:start_link/4 is synchronous. It does not return until the
gen_server has been initialized and is ready to receive requests.
gen_server:start_link/4 must be used if the gen_server is part of
a supervision tree, meaning that it was started by a supervisor. There
is another function, gen_server:start/4, to start a standalone
gen_server that is not part of a supervision tree.

 Synchronous Requests - Call

The synchronous request alloc() is implemented using gen_server:call/2:
alloc() ->
 gen_server:call(ch3, alloc).
ch3 is the name of the gen_server and must agree with the name
used to start it. alloc is the actual request.
The request is made into a message and sent to the gen_server.
When the request is received, the gen_server calls
handle_call(Request, From, State), which is expected to return
a tuple {reply,Reply,State1}. Reply is the reply that is to be sent back
to the client, and State1 is a new value for the state of the gen_server.
handle_call(alloc, _From, Chs) ->
 {Ch, Chs2} = alloc(Chs),
 {reply, Ch, Chs2}.
In this case, the reply is the allocated channel Ch and the new state is the
set of remaining available channels Chs2.
Thus, the call ch3:alloc() returns the allocated channel Ch and the
gen_server then waits for new requests, now with an updated list of
available channels.

 Asynchronous Requests - Cast

The asynchronous request free(Ch) is implemented using gen_server:cast/2:
free(Ch) ->
 gen_server:cast(ch3, {free, Ch}).
ch3 is the name of the gen_server. {free, Ch} is the actual request.
The request is made into a message and sent to the gen_server.
cast, and thus free, then returns ok.
When the request is received, the gen_server calls
handle_cast(Request, State), which is expected to return a tuple
{noreply,State1}. State1 is a new value for the state of the gen_server.
handle_cast({free, Ch}, Chs) ->
 Chs2 = free(Ch, Chs),
 {noreply, Chs2}.
In this case, the new state is the updated list of available channels Chs2.
The gen_server is now ready for new requests.

 Stopping

 In a Supervision Tree

If the gen_server is part of a supervision tree, no stop function is needed.
The gen_server is automatically terminated by its supervisor. Exactly how
this is done is defined by a shutdown strategy
set in the supervisor.
If it is necessary to clean up before termination, the shutdown strategy
must be a time-out value and the gen_server must be set to trap exit signals
in function init. When ordered to shutdown, the gen_server then calls
the callback function terminate(shutdown, State):
init(Args) ->
 ...,
 process_flag(trap_exit, true),
 ...,
 {ok, State}.

...

terminate(shutdown, State) ->
 %% Code for cleaning up here
 ...
 ok.

 Standalone Gen_Servers

If the gen_server is not part of a supervision tree, a stop function
can be useful, for example:
...
export([stop/0]).
...

stop() ->
 gen_server:cast(ch3, stop).
...

handle_cast(stop, State) ->
 {stop, normal, State};
handle_cast({free, Ch}, State) ->
 ...

...

terminate(normal, State) ->
 ok.
The callback function handling the stop request returns a tuple
{stop,normal,State1}, where normal specifies that it is
a normal termination and State1 is a new value for the state
of the gen_server. This causes the gen_server to call
terminate(normal, State1) and then it terminates gracefully.

 Handling Other Messages

If the gen_server is to be able to receive other messages than requests,
the callback function handle_info(Info, State) must be implemented
to handle them. Examples of other messages are exit messages,
if the gen_server is linked to other processes than the supervisor
and it is trapping exit signals.
handle_info({'EXIT', Pid, Reason}, State) ->
 %% Code to handle exits here.
 ...
 {noreply, State1}.
The final function to implement is code_change/3:
code_change(OldVsn, State, Extra) ->
 %% Code to convert state (and more) during code change.
 ...
 {ok, NewState}.

<code class="inline">gen_statem</code> Behaviour

It is recommended to read this section alongside
the gen_statem reference manual in STDLIB.

 Event-Driven State Machines

Established Automata Theory does not deal much with how a state transition
is triggered, but assumes that the output is a function of the input
(and the state) and that they are some kind of values.
For an Event-Driven State Machine, the input is an event that triggers
a state transition and the output is actions executed during
the state transition. Analogously to the mathematical model
of a Finite State Machine, it can be described as a set of relations
of the following form:
State(S) x Event(E) -> Actions(A), State(S')
These relations are interpreted as follows: if we are in state S,
and event E occurs, we are to perform actions A, and make a transition
to state S'. Notice that S' can be equal to S,
and that A can be empty.
In gen_statem we define a state change as a state transition in which the
new state S' is different from the current state S, where "different" means
Erlang's strict inequality: =/= also known as "does not match". gen_statem
does more things during state changes than during other state transitions.
As A and S' depend only on S and E, the kind of state machine described
here is a Mealy machine (see, for example, the Wikipedia article
Mealy machine).
Similar to most gen_ behaviours, gen_statem keeps a server Data
item besides the state. Because of this data item, and since there is
no restriction on the number of states (assuming sufficient virtual
machine memory), or on the number of distinct input events, a state
machine implemented with this behaviour is Turing complete. But it
feels mostly like an Event-Driven Mealy machine.

 Everyday State Machine

An example of an everyday device that can be modelled as a state machine
is a classic ballpoint pen, the retractable type where you push the end
to expose the tip and push the side to retract it. (A push-push pen
would also be an example but that type has only one event, so it is
less interesting)
[image: Ballpoint Pen]

title: Ballpoint Pen State Diagram

stateDiagram-v2
 [*] --> Retracted
 Retracted --> Retracted : push-side
 Retracted --> Exposed : push-end\n* Expose tip
 Exposed --> Retracted : push-side\n* Retract tip
 Exposed --> Exposed : push-end
The state diagram shows the states, events, and state transitions
with transition actions. Note that pushing the end when the tip is exposed,
or pushing the side when the tip is retracted, does not change the state
nor cause any actions, which is modeled by an arrow back to the same state.

 When to use gen_statem

You should consider using gen_statem over gen_server if your
process logic is convenient to describe as a state machine and you
need any of these gen_statem key features:
	Co-located callback code for each state, for all
event types, such as call,
cast, and info
	Postponing events - a substitute for selective
receive
	Inserted events - events from the state
machine to itself; for purely internal events in particular
	State enter calls - callback on state entry
co-located with the rest of each state's callback code
	Easy-to-use time-outs - state time-outs,
event time-outs, and
generic time-outs (named time-outs)

For simple state machines not needing these features, gen_server
is perfectly suitable. It also has a smaller call overhead, but we are
talking about something like 2 vs 3.3 microseconds call roundtrip time
here, so if the server callback does just a little bit more than just
replying, or if calls are not extremely frequent, that difference
will be hard to notice.

 Callback Module

The callback module contains functions that implement the state
machine. When an event occurs, the gen_statem behaviour engine calls
a function in the callback module with the event, current state, and
server data. This callback function performs the actions for the
event, and returns the new state and server data as well as actions to
be performed by the behaviour engine.
The behaviour engine holds the state machine state, server data, timer
references, a queue of postponed messages, and other metadata. It receives all
process messages, handles the system messages, and calls the callback module
with state machine specific events.
The callback module can be changed for a running server using any of the
transition actions
{change_callback_module, NewModule},
{push_callback_module, NewModule}, or
pop_callback_module.
Note
Switching the callback module is a pretty esoteric thing to do...
The origin for this feature is a protocol that after version
negotiation branches off into quite different state machines depending
on the protocol version. There might be other use cases. Beware
that the new callback module completely replaces the previous callback
module, so all relevant callback functions have to handle the state
and data from the previous callback module.

 Callback Modes

The gen_statem behaviour supports two callback modes:
	state_functions - Events are handled
by one callback function per state.

	handle_event_function - Events are
handled by one single callback function.

The callback mode is a property of the callback module and is set at server
start. It may be changed due to a code upgrade/downgrade, or when changing the
callback module.
See the section State Callback that describes the
event handling callback function(s).
The callback mode is selected by implementing a mandatory callback function
Module:callback_mode() that returns one of
the callback modes.
The Module:callback_mode() function
may also return a list containing the callback mode and the atom
state_enter in which case state enter calls
are activated for the callback mode.

 Choosing the Callback Mode

The short version: choose state_functions - it is the one most like
gen_fsm. But if you do not want the restriction that the state must be an
atom, or if you do not want to write one state callback function per state,
please read on...
The two callback modes give different
possibilities and restrictions, with one common goal: to handle all possible
combinations of events and states.
This can be done, for example, by focusing on one state at the time and for
every state ensure that all events are handled. Alternatively, you can focus
on one event at the time and ensure that it is handled in every state.
You can also use a mix of these strategies.
With state_functions, you are restricted to use atom-only states, and the
gen_statem engine branches depending on state name for you.
This encourages the callback module to co-locate the implementation
of all event actions particular to one state in the same place in the code,
hence to focus on one state at the time.
This mode fits well when you have a regular state diagram, like the ones
in this chapter, which describes all events and actions belonging to a state
visually around that state, and each state has its unique name.
With handle_event_function, you are free to mix strategies, as all events
and states are handled in the same callback function.
This mode works equally well when you want to focus on one event
at the time or on one state at the time, but function
Module:handle_event/4 quickly grows
too large to handle without branching to helper functions.
The mode enables the use of non-atom states, for example, complex states,
or even hierarchical states. See section Complex State.
If, for example, a state diagram is largely alike for the client side
and the server side of a protocol, you can have a state {StateName, server},
or {StateName, client}, and make StateName determine where in the code
to handle most events in the state. The second element of the tuple
is then used to select whether to handle special client-side
or server-side events.

 State Callback

The state callback is the callback function that handles an event in the
current state, and which function that is depends on the callback mode:
	state_functions - The event is handled by:
Module:StateName(EventType, EventContent, Data)
This form is the one mostly used in the Example section.

	handle_event_function - The event is handled by:
Module:handle_event(EventType, EventContent, State, Data)
See section One State Callback for an example.

The state is either the name of the state callback itself, or an argument
to the handle_event() callback. The
other arguments are the EventType and the event dependent EventContent,
both described in section
Event Types and Event Content,
and the the last argument is the current server Data.
State Enter Calls (see that section)
are also handled by the event handler and have slightly different arguments.
The state callback return values are defined in the description of
Module:StateName/3 in gen_statem.
Here is a maybe more readable list:
	{next_state, NextState, NewData [, Actions]}
Set next state and update the server data. If the Actions field is used,
execute Transition Actions
(see that section). An empty Actions list is equivalent to not
returning the field.
If NextState =/= State it's a state change and gen_statem
does some extra things: the event queue is restarted from the oldest
postponed event, any current
state time-out is canceled, and a
state enter call is performed, if enabled.
The current State becomes OldState in a state enter call.

	{keep_state, NewData [, Actions]}
Same as the next_state values with NextState =:= State, that is,
no state change.

	keep_state_and_data | {keep_state_and_data, Actions}
Same as the keep_state values with NextData =:= Data, that is, no change
in server data.

	{repeat_state, NewData [, Actions]} | repeat_state_and_data |{repeat_state_and_data, Actions}
Same as the keep_state or keep_state_and_data values, but if
state enter calls are enabled;
repeat it as if this state was entered again. In this case State
and OldState becomes equal in the repeated state enter call
since the state is re-entered from itself.

	{stop, Reason [, NewData]}
Stop the server with reason Reason. If the NewData field is used,
first update the server data.

	{stop_and_reply, Reason, [NewData,] ReplyActions}
Same as the stop values, but first execute the given
transition actions
that may only be reply actions.

 The First State

To decide the first state the
Module:init(Args) callback function is called
before any state callback is called. This function
behaves like a state callback function, but gets its only argument Args
from the gen_statem start/3,4 or
start_link/3,4 function, and returns
{ok, State, Data} or {ok, State, Data, Actions}. If you use the
postpone action from this function, that action
is ignored, since there is no event to postpone.

 Transition Actions

In the first section
(Event-Driven State Machines), actions
were mentioned as a part of the general state machine model. These general
actions are implemented with the code that callback module gen_statem
executes in an event-handling callback function before returning to the
gen_statem engine.
There are more specific transition actions that a callback function can
command the gen_statem engine to do after the callback function return.
These are commanded by returning a list of actions
in the return value from the
callback function. These are the possible
transition actions:
	{postpone, Boolean} -
If true postpone the current event, see section
Postponing Events.

	{hibernate, Boolean -
If true hibernate the gen_statem, treated in section
Hibernation.

	{state_timeout, Time, EventContent [, Opts]}|
{state_timeout, update, EventContent}|
{state_timeout, cancel} -
Start, update, or cancel a state time-out, read more in sections
Time-Outs and
State Time-Outs.

	{{timeout, Name}, Time, EventContent [, Opts]}|
{{timeout, Name}, update, EventContent}|
{{timeout, Name}, cancel} -
Start, update, or cancel a generic time-out, read more in sections
Time-Outs and
Generic Time-Outs.

	{timeout, Time, EventContent [, Opts]} -
Start an event time-out, see more in sections Time-Outs
and Event Time-Outs.

	{reply, From, Reply} - Reply to a
caller, mentioned at the end of section
All State Events.

	{next_event, EventType, EventContent} -
Generate the next event to handle, see section
Inserted Events.

	{change_callback_module, NewModule} -
Change the callback module for the running server.
This can be done during any state transition, whether it is
a state change or not, but it cannot be done from a
state enter call.

	{push_callback_module, NewModule} -
Push the current callback module to the top of an internal stack
of callback modules and set the new callback module
for the running server. Otherwise like
{change_callback_module, NewModule} above.

	pop_callback_module - Pop the top module
from the internal stack of callback modules and set it to be the new
callback module for the running server. If the
stack is empty the server fails. Otherwise like
{change_callback_module, NewModule} above.

For details, see module gen_statem for type
action(). You can, for example, reply to many
callers, generate multiple next events, and set a time-out to use absolute
instead of relative time (using the Opts field).
Out of these transition actions, the only immediate action is
reply for replying to a caller. The other actions are collected and
handled later during the state transition.
Inserted events are stored and inserted all
together, and the rest set transition options where the last of a
specific type override the previous. See the description of a state
transition in module gen_statem for type
transition_option().
The different Time-Outs and
next_event actions generate new events with
corresponding
event types and event content.

 Event Types and Event Content

Events are categorized in different
event types. Events of all types are for a
given state handled in the same callback function, and that function gets
EventType and EventContent as arguments. The meaning of the EventContent
depends on the EventType.
The following is a complete list of event types and from where they come:
	cast - Generated by
gen_statem:cast(ServerRef, Msg) where Msg becomes
the EventContent.

	{call, From} - Generated by
gen_statem:call(ServerRef, Request),
gen_statem:send_request(ServerRef, Request), or
gen_statem:send_request(ServerRef, Request, _, _) where Request becomes
the EventContent. From is the reply address to use when replying
either through the transition action {reply, From, Reply},
or by calling gen_statem:reply(From, Reply)
from the callback module.

	info - Generated by
any regular process message sent to the gen_statem process.
The process message becomes the EventContent.

	state_timeout - Generated by
transition action
{state_timeout, Time, EventContent}
when the time-out expires. Read more in sections Time-Outs
and State Time-Outs.

	{timeout, Name} - Generated by
transition action
{{timeout, Name},Time, EventContent}
when the time-out expires. Read more in sections Time-Outs
and Generic Time-Outs.

	timeout - Generated by
transition action
{timeout, Time, EventContent}
(or its short form Time) when the time-out expires. Read more in sections
Time-Outs and Event Time-Outs.

	internal - Generated by transition
action {next_event, internal, EventContent}.
All event types above can also be generated using the next_event action:
{next_event, EventType, EventContent}.

 State Enter Calls

The gen_statem behaviour can, if this is enabled, regardless of callback
mode, automatically call the state callback
with special arguments whenever the state changes, so you can write
state enter actions near the rest of the state transition rules.
It typically looks like this:
StateName(enter, OldState, Data) ->
 ... code for state enter actions here ...
 {keep_state, NewData};
StateName(EventType, EventContent, Data) ->
 ... code for actions here ...
 {next_state, NewStateName, NewData}.
Since the state enter call is not an event there are restrictions on the
allowed return value and state transition actions.
You must not change the state, postpone this non-event,
insert any events, or change the
callback module.
The first state that is entered after gen_statem:init/1 will get
a state enter call with OldState equal to the current state.
You may repeat the state enter call using the {repeat_state,...} return
value from the state callback. In this case
OldState will also be equal to the current state.
Depending on how your state machine is specified, this can be a very useful
feature, but it forces you to handle the state enter calls in all states.
See also the State Enter Actions section.

 Time-Outs

Time-outs in gen_statem are started from a
transition action during a state transition
that is when exiting from the state callback.
There are 3 types of time-outs in gen_statem:
	state_timeout - There is one
state time-out that is automatically canceled by
a state change.

	{timeout, Name} - There are any
number of generic time-outs differing by their
Name. They have no automatic canceling.

	timeout - There is one
event time-out that is automatically canceled by
any event. Note that postponed and
inserted events cancel this time-out just as
external events do.

When a time-out is started, any running time-out of the same type
(state_timeout, {timeout, Name}, or timeout) is canceled, that is,
the time-out is restarted with the new time and event content.
All time-outs have an EventContent that is part of the
transition action that starts the time-out.
Different EventContents does not create different time-outs. The
EventContent is delivered to the state callback
when the time-out expires.

 Canceling a Time-Out

Starting a time-out with the infinity time value would never time out,
which is optimized by not even starting it, and any running
time-out with the same tag will be canceled. The EventContent will
in this case be ignored, so it makes sense to set it to undefined.
A more explicit way to cancel a time-out is to use a
transition action on the form
{TimeoutType, cancel}.

 Updating a Time-Out

While a time-out is running, its EventContent can be updated using a
transition action on the form
{TimeoutType, update, NewEventContent}.
If this feature is used while no such TimeoutType is running, a time-out
event is immediately delivered as when starting a
zero time-out.

 Zero Time-Out

If a time-out is started with the time 0 it will actually not be started.
Instead the time-out event will immediately be inserted to be processed after
any events already enqueued, and before any not yet received external events.
Note that some time-outs are automatically canceled so if you for example
combine postponing an event in a state change
with starting an event time-out with time 0 there
will be no time-out event inserted since the event time-out is canceled by
the postponed event that is delivered due to the state change.

 Example

A door with a code lock can be seen as a state machine. Initially,
the door is locked. When someone presses a button, a {button, Button}
event is generated. In the state diagram below, "Collect Buttons" means
to store buttons up to as many as in the correct code; append to
a length capped list. If correct, the door is unlocked for 10 seconds.
If incorrect, we wait for a new button to be pressed.

title: Code Lock State Diagram

stateDiagram-v2
 state check_code <<choice>>

 [*] --> locked : * do_lock()\n* Clear Buttons

 locked --> check_code : {button, Button}\n* Collect Buttons
 check_code --> locked : Incorrect code
 check_code --> open : Correct code\n* do_unlock()\n* Clear Buttons\n* Set state_timeout 10 s

 open --> open : {button, Digit}
 open --> locked : state_timeout\n* do_lock()
This code lock state machine can be implemented using gen_statem with
the following callback module:
-module(code_lock).
-behaviour(gen_statem).
-define(NAME, code_lock).

-export([start_link/1]).
-export([button/1]).
-export([init/1,callback_mode/0,terminate/3]).
-export([locked/3,open/3]).

start_link(Code) ->
 gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

button(Button) ->
 gen_statem:cast(?NAME, {button,Button}).

init(Code) ->
 do_lock(),
 Data = #{code => Code, length => length(Code), buttons => []},
 {ok, locked, Data}.

callback_mode() ->
 state_functions.
locked(
 cast, {button,Button},
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
 NewButtons =
 if
 length(Buttons) < Length ->
 Buttons;
 true ->
 tl(Buttons)
 end ++ [Button],
 if
 NewButtons =:= Code -> % Correct
	 do_unlock(),
 {next_state, open, Data#{buttons := []},
 [{state_timeout,10_000,lock}]}; % Time in milliseconds
	true -> % Incomplete | Incorrect
 {next_state, locked, Data#{buttons := NewButtons}}
 end.
open(state_timeout, lock, Data) ->
 do_lock(),
 {next_state, locked, Data};
open(cast, {button,_}, Data) ->
 {next_state, open, Data}.
do_lock() ->
 io:format("Lock~n", []).
do_unlock() ->
 io:format("Unlock~n", []).

terminate(_Reason, State, _Data) ->
 State =/= locked andalso do_lock(),
 ok.
The code is explained in the next sections.

 Starting gen_statem

In the example in the previous section, gen_statem is started by calling
code_lock:start_link(Code):
start_link(Code) ->
 gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
start_link/1 calls function gen_statem:start_link/4,
which spawns and links to a new process, a gen_statem.
	The first argument, {local,?NAME}, specifies the name. In this case, the
gen_statem is locally registered as code_lock through the macro ?NAME.
If the name is omitted, the gen_statem is not registered. Instead its pid
must be used. The name can also be specified as {global, Name}, then the
gen_statem is registered using global:register_name/2 in Kernel.

	The second argument, ?MODULE, is the name of the callback module,
that is, the module where the callback functions are located,
which is this module.
The interface functions (start_link/1 and button/1) are located in the
same module as the callback functions (init/1, locked/3, and open/3).
It is normally good programming practice to have the client-side code
and the server-side code contained in the same module.

	The third argument, Code, is a list of digits, which is the correct
unlock code that is passed to callback function init/1.

	The fourth argument, [], is a list of options. For the available options,
see gen_statem:start_link/3.

If name registration succeeds, the new gen_statem process calls callback
function code_lock:init(Code). This function is expected to return
{ok, State, Data}, where State is the initial state of the gen_statem,
in this case locked; assuming that the door is locked to begin with.
Data is the internal server data of the gen_statem. Here the server data
is a map() with key code that stores the correct
button sequence, key length store its length, and key buttons
that stores the collected buttons up to the same length.
init(Code) ->
 do_lock(),
 Data = #{code => Code, length => length(Code), buttons => []},
 {ok, locked, Data}.
Function gen_statem:start_link/3,4
is synchronous. It does not return until the gen_statem is initialized
and is ready to receive events.
Function gen_statem:start_link/3,4
must be used if the gen_statem is part of a supervision tree, that is,
started by a supervisor. Function,
gen_statem:start/3,4 can be used to start
a standalone gen_statem, meaning it is not part of a supervision tree.
Function Module:callback_mode/0 selects
the CallbackMode for the callback module,
in this case state_functions.
That is, each state has its own handler function:
callback_mode() ->
 state_functions.

 Handling Events

The function notifying the code lock about a button event is implemented using
gen_statem:cast/2:
button(Button) ->
 gen_statem:cast(?NAME, {button,Button}).
The first argument is the name of the gen_statem and must agree with
the name used to start it. So, we use the same macro ?NAME as when starting.
{button, Button} is the event content.
The event is sent to the gen_statem. When the event is received, the
gen_statem calls StateName(cast, Event, Data), which is expected
to return a tuple {next_state, NewStateName, NewData}, or
{next_state, NewStateName, NewData, Actions}. StateName is the name
of the current state and NewStateName is the name of the next state.
NewData is a new value for the server data of the gen_statem,
and Actions is a list of actions to be performed by the gen_statem engine.
locked(
 cast, {button,Button},
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
 NewButtons =
 if
 length(Buttons) < Length ->
 Buttons;
 true ->
 tl(Buttons)
 end ++ [Button],
 if
 NewButtons =:= Code -> % Correct
	 do_unlock(),
 {next_state, open, Data#{buttons := []},
 [{state_timeout,10_000,lock}]}; % Time in milliseconds
	true -> % Incomplete | Incorrect
 {next_state, locked, Data#{buttons := NewButtons}}
 end.
In state locked, when a button is pressed, it is collected with the
previously pressed buttons up to the length of the correct code, then
compared with the correct code. Depending on the result, the door is
either unlocked and the gen_statem goes to state open, or the door
remains in state locked.
When changing to state open, the collected buttons are reset, the lock
unlocked, and a state time-out for 10 seconds is started.
open(cast, {button,_}, Data) ->
 {next_state, open, Data}.
In state open, a button event is ignored by staying in the same state.
This can also be done by returning {keep_state, Data}, or in this case
since Data is unchanged, by returning keep_state_and_data.

 State Time-Outs

When a correct code has been given, the door is unlocked and the following
tuple is returned from locked/2:
{next_state, open, Data#{buttons := []},
 [{state_timeout,10_000,lock}]}; % Time in milliseconds
10,000 is a time-out value in milliseconds. After this time (10 seconds),
a time-out occurs. Then, StateName(state_timeout, lock, Data) is called.
The time-out occurs when the door has been in state open for 10 seconds.
After that the door is locked again:
open(state_timeout, lock, Data) ->
 do_lock(),
 {next_state, locked, Data};
The timer for a state time-out is automatically canceled when
the state machine does a state change.
You can restart, cancel, or update a state time-out. See section
Time-Outs for details.

 All State Events

Sometimes events can arrive in any state of the gen_statem. It is convenient
to handle these in a common state handler function that all state functions
call for events not specific to the state.
Consider a code_length/0 function that returns the length
of the correct code. We dispatch all events that are not state-specific
to the common function handle_common/3:
...
-export([button/1,code_length/0]).
...

code_length() ->
 gen_statem:call(?NAME, code_length).

...
locked(...) -> ... ;
locked(EventType, EventContent, Data) ->
 handle_common(EventType, EventContent, Data).

...
open(...) -> ... ;
open(EventType, EventContent, Data) ->
 handle_common(EventType, EventContent, Data).

handle_common({call,From}, code_length, #{code := Code} = Data) ->
 {keep_state, Data,
 [{reply,From,length(Code)}]}.
Another way to do it is through a convenience macro ?HANDLE_COMMON/0:
...
-export([button/1,code_length/0]).
...

code_length() ->
 gen_statem:call(?NAME, code_length).

-define(HANDLE_COMMON,
 ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
%%
handle_common({call,From}, code_length, #{code := Code} = Data) ->
 {keep_state, Data,
 [{reply,From,length(Code)}]}.

...
locked(...) -> ... ;
?HANDLE_COMMON.

...
open(...) -> ... ;
?HANDLE_COMMON.
This example uses gen_statem:call/2, which waits for a reply from the server.
The reply is sent with a {reply, From, Reply} tuple in an action list in the
{keep_state, ...} tuple that retains the current state. This return form is
convenient when you want to stay in the current state but do not know or care
about what it is.
If the common state callback needs to know the current state a function
handle_common/4 can be used instead:
-define(HANDLE_COMMON,
 ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

 One State Callback

If callback mode handle_event_function is used,
all events are handled in
Module:handle_event/4 and we can
(but do not have to) use an event-centered approach where we first branch
depending on event and then depending on state:
...
-export([handle_event/4]).

...
callback_mode() ->
 handle_event_function.

handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
 case State of
	locked ->
 #{length := Length, buttons := Buttons} = Data,
 NewButtons =
 if
 length(Buttons) < Length ->
 Buttons;
 true ->
 tl(Buttons)
 end ++ [Button],
 if
 NewButtons =:= Code -> % Correct
 do_unlock(),
 {next_state, open, Data#{buttons := []},
 [{state_timeout,10_000,lock}]}; % Time in milliseconds
 true -> % Incomplete | Incorrect
 {keep_state, Data#{buttons := NewButtons}}
 end;
	open ->
 keep_state_and_data
 end;
handle_event(state_timeout, lock, open, Data) ->
 do_lock(),
 {next_state, locked, Data};
handle_event(
 {call,From}, code_length, _State, #{code := Code} = Data) ->
 {keep_state, Data,
 [{reply,From,length(Code)}]}.

...

 Stopping

 In a Supervision Tree

If the gen_statem is part of a supervision tree, no stop function is needed.
The gen_statem is automatically terminated by its supervisor. Exactly how
this is done is defined by a shutdown strategy
set in the supervisor.
If it is necessary to clean up before termination, the shutdown strategy
must be a time-out value and the gen_statem must in function init/1
set itself to trap exit signals by calling
process_flag(trap_exit, true):
init(Args) ->
 process_flag(trap_exit, true),
 do_lock(),
 ...
When ordered to shut down, the gen_statem then calls callback function
terminate(shutdown, State, Data).
In this example, function terminate/3 locks the door if it is open,
so we do not accidentally leave the door open
when the supervision tree terminates:
terminate(_Reason, State, _Data) ->
 State =/= locked andalso do_lock(),
 ok.

 Standalone gen_statem

If the gen_statem is not part of a supervision tree, it can be stopped
using gen_statem:stop/1, preferably through
an API function:
...
-export([start_link/1,stop/0]).

...
stop() ->
 gen_statem:stop(?NAME).
This makes the gen_statem call callback function terminate/3 just like
for a supervised server and waits for the process to terminate.

 Event Time-Outs

A time-out feature inherited from gen_statem's predecessor gen_fsm,
is an event time-out, that is, if an event arrives the timer is canceled.
You get either an event or a time-out, but not both.
It is ordered by the
transition action {timeout, Time, EventContent},
or just an integer Time, even without the enclosing actions list (the latter
is a form inherited from gen_fsm).
This type of time-out is useful, for example, to act on inactivity.
Let's restart the code sequence if no button is pressed for say 30 seconds:
...

locked(timeout, _, Data) ->
 {next_state, locked, Data#{buttons := []}};
locked(
 cast, {button,Button},
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
...
	true -> % Incomplete | Incorrect
 {next_state, locked, Data#{buttons := NewButtons},
 30_000} % Time in milliseconds
...
Whenever we receive a button event we start an event time-out of 30 seconds,
and if we get an event type of timeout we reset the remaining
code sequence.
An event time-out is canceled by any other event so you either get
some other event or the time-out event. Therefore, canceling,
restarting, or updating an event time-out is neither possible nor
necessary. Whatever event you act on has already canceled
the event time-out, so there is never a running event time-out
while the state callback executes.
Note that an event time-out does not work well when you have for example a
status call as in section All State Events, or
handle unknown events, since all kinds of events will cancel
the event time-out.

 Generic Time-Outs

The previous example of state time-outs only work if the state machine stays
in the same state during the time-out time. And event time-outs only work
if no disturbing unrelated events occur.
You may want to start a timer in one state and respond to the time-out in
another, maybe cancel the time-out without changing states, or perhaps run
multiple time-outs in parallel. All this can be accomplished with
generic time-outs. They may look a little
bit like event time-outs but contain
a name to allow for any number of them simultaneously and they are
not automatically canceled.
Here is how to accomplish the state time-out in the previous example
by instead using a generic time-out named for example open:
...
locked(
 cast, {button,Button},
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
...
 if
 NewButtons =:= Code -> % Correct
	 do_unlock(),
 {next_state, open, Data#{buttons := []},
 [{{timeout,open},10_000,lock}]}; % Time in milliseconds
...

open({timeout,open}, lock, Data) ->
 do_lock(),
 {next_state,locked,Data};
open(cast, {button,_}, Data) ->
 {keep_state,Data};
...
Specific generic time-outs can just as state time-outs
be restarted or canceled by setting it to a new time or infinity.
In this particular case we do not need to cancel the time-out since
the time-out event is the only possible reason to do a state change
from open to locked.
Instead of bothering with when to cancel a time-out, a late time-out event
can be handled by ignoring it if it arrives in a state
where it is known to be late.
You can restart, cancel, or update a generic time-out.
See section Time-Outs for details.

 Erlang Timers

The most versatile way to handle time-outs is to use Erlang Timers; see
erlang:start_timer/3,4. Most time-out tasks
can be performed with the time-out features in gen_statem,
but an example of one that cannot is if you should need the return value
from erlang:cancel_timer(Tref), that is,
the remaining time of the timer.
Here is how to accomplish the state time-out in the previous example
by instead using an Erlang Timer:
...
locked(
 cast, {button,Button},
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
...
 if
 NewButtons =:= Code -> % Correct
	 do_unlock(),
	 Tref =
 erlang:start_timer(
 10_000, self(), lock), % Time in milliseconds
 {next_state, open, Data#{buttons := [], timer => Tref}};
...

open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
 do_lock(),
 {next_state,locked,maps:remove(timer, Data)};
open(cast, {button,_}, Data) ->
 {keep_state,Data};
...
Removing the timer key from the map when we do a state change to locked
is not strictly necessary since we can only get into state open
with an updated timer map value. But it can be nice to not have
outdated values in the state Data.
If you need to cancel a timer because of some other event, you can use
erlang:cancel_timer(Tref). Note that no time-out
message will arrive after this (because the timer has been
explicitly canceled), unless you have already postponed one earlier
(see the next section), so ensure that you do not accidentally
postpone such messages. Also note that a time-out message may arrive
during a state callback that is canceling the timer, so you may have to
read out such a message from the process mailbox, depending on
the return value from erlang:cancel_timer(Tref).
Another way to handle a late time-out can be to not cancel it, but to ignore it
if it arrives in a state where it is known to be late.

 Postponing Events

If you want to ignore a particular event in the current state and handle it
in a future state, you can postpone the event. A postponed event
is retried after a state change, that is, OldState =/= NewState.
Postponing is ordered by the
transition action postpone.
In this example, instead of ignoring button events while in the open state,
we can postpone them handle them later in the locked state:
...
open(cast, {button,_}, Data) ->
 {keep_state,Data,[postpone]};
...
Since a postponed event is only retried after a state change, you have to
think about where to keep a state data item. You can keep it in the server
Data or in the State itself, for example by having two more or less
identical states to keep a boolean value, or by using a complex state (see
section Complex State) with
callback mode
handle_event_function. If a change
in the value changes the set of events that is handled, the value
should be in the State. Otherwise no postponed events will be retried
since only the server Data changes.
This is important if events are postponed. But remember that an incorrect
design decision of what belongs in the state, may become a hard to find bug
some time later, when event postponing is introduced.

 Fuzzy State Diagrams

It is not uncommon that a state diagram does not specify how to handle events
that are not illustrated in a particular state in the diagram.
Hopefully this is described in an associated text or from the context.
Possible actions: ignore as in drop the event (maybe log it) or deal with
the event in some other state as in postpone it.

 Selective Receive

Erlang's selective receive statement is often used to describe simple state
machine examples in straightforward Erlang code. The following is a possible
implementation of the first example:
-module(code_lock).
-define(NAME, code_lock_1).
-export([start_link/1,button/1]).

start_link(Code) ->
 spawn(
 fun () ->
	 true = register(?NAME, self()),
	 do_lock(),
	 locked(Code, length(Code), [])
 end).

button(Button) ->
 ?NAME ! {button,Button}.
locked(Code, Length, Buttons) ->
 receive
 {button,Button} ->
 NewButtons =
 if
 length(Buttons) < Length ->
 Buttons;
 true ->
 tl(Buttons)
 end ++ [Button],
 if
 NewButtons =:= Code -> % Correct
 do_unlock(),
		 open(Code, Length);
 true -> % Incomplete | Incorrect
 locked(Code, Length, NewButtons)
 end
 end.
open(Code, Length) ->
 receive
 after 10_000 -> % Time in milliseconds
	 do_lock(),
	 locked(Code, Length, [])
 end.

do_lock() ->
 io:format("Locked~n", []).
do_unlock() ->
 io:format("Open~n", []).
The selective receive in this case causes open to implicitly postpone any
events to the locked state.
A catch-all receive should never be used from a gen_statem behaviour
(or from any gen_* behaviour), as the receive statement is within
the gen_* engine itself. sys-compatible behaviours must respond to
system messages and therefore do that in their engine receive loop,
passing non-system messages to the callback module. Using a catch-all
receive can result in system messages being discarded, which in turn
can lead to unexpected behaviour. If a selective receive must be used,
great care should be taken to ensure that only messages pertinent
to the operation are received. Likewise, a callback must return
in due time to let the engine receive loop handle system messages,
or they might time out, also leading to unexpected behaviour.
The transition action postpone is
designed to model selective receives. A selective receive implicitly
postpones any events not yet received, but the postpone transition
action explicitly postpones a single received event.
Both mechanisms have the same theoretical time and memory complexity,
but note that the selective receive language construct has smaller
constant factors.

 State Enter Actions

Say you have a state machine specification that uses state enter actions.
Although you can code this using inserted events (described in the next
section), especially if only one or a few states have state enter actions,
this is a perfect use case for the built in
state enter calls.
You return a list containing state_enter from your
callback_mode/0 function and the
gen_statem engine will call your state callback once with an event
(enter, OldState, ...) whenever it does a state change. Then you
just need to handle these event-like calls in all states.
...
init(Code) ->
 process_flag(trap_exit, true),
 Data = #{code => Code, length = length(Code)},
 {ok, locked, Data}.

callback_mode() ->
 [state_functions,state_enter].

locked(enter, _OldState, Data) ->
 do_lock(),
 {keep_state,Data#{buttons => []}};
locked(
 cast, {button,Button},
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
...
 if
 NewButtons =:= Code -> % Correct
 {next_state, open, Data};
...

open(enter, _OldState, _Data) ->
 do_unlock(),
 {keep_state_and_data,
 [{state_timeout,10_000,lock}]}; % Time in milliseconds
open(state_timeout, lock, Data) ->
 {next_state, locked, Data};
...
You can repeat the state enter code by returning one of
{repeat_state, ...},{repeat_state_and_data, _},
or repeat_state_and_data that otherwise behaves exactly like their
keep_state siblings. See the type
state_callback_result()
in the Reference Manual.

 Inserted Events

It can sometimes be beneficial to be able to generate events to your own
state machine. This can be done with the
transition action
{next_event, EventType, EventContent}.
You can generate events of any existing type,
but theinternal type can only be generated through action next_event.
Hence, it cannot come from an external source, so you can be certain
that an internal event is an event from your state machine to itself.
One example for this is to pre-process incoming data, for example decrypting
chunks or collecting characters up to a line break.
Purists may argue that this should be modeled with a separate state machine
that sends pre-processed events to the main state machine.
However, for efficiency's sake, the small pre-processing state machine
can be integrated into the common event handling of the main state
machine. This integration involves using a few state data items
to dispatch pre-processed events as internal events to the main state
machine.
Using internal events also can make it easier to synchronize the state
machines.
A variant of this is to use a complex state with
one state callback, modeling the state
with, for example, a tuple {MainFSMState, SubFSMState}.
To illustrate this we make up an example where the buttons instead generate
down and up (press and release) events, and the lock responds
to an up event only after the corresponding down event.
...
-export([down/1, up/1]).
...
down(Button) ->
 gen_statem:cast(?NAME, {down,Button}).

up(Button) ->
 gen_statem:cast(?NAME, {up,Button}).

...

locked(enter, _OldState, Data) ->
 do_lock(),
 {keep_state,Data#{buttons => []}};
locked(
 internal, {button,Button},
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
...
handle_common(cast, {down,Button}, Data) ->
 {keep_state, Data#{button => Button}};
handle_common(cast, {up,Button}, Data) ->
 case Data of
 #{button := Button} ->
 {keep_state,maps:remove(button, Data),
 [{next_event,internal,{button,Button}}]};
 #{} ->
 keep_state_and_data
 end;
...

open(internal, {button,_}, Data) ->
 {keep_state,Data,[postpone]};
...
If you start this program with code_lock:start([17]) you can unlock with
code_lock:down(17), code_lock:up(17).

 Example Revisited

This section includes the example after most of the mentioned modifications
and some more using state enter calls, which deserves a new state diagram:

title: Code Lock State Diagram Revisited

stateDiagram-v2
 state enter_locked <<choice>>
 state enter_open <<choice>>
 state check_code <<choice>>

 [*] --> enter_locked

 enter_locked --> locked : * do_lock()\n* Clear Buttons
 locked --> check_code : {button, Button}\n* Collect Buttons
 locked --> locked : state_timeout\n* Clear Buttons
 check_code --> locked : Incorrect code\n* Set state_timeout 30 s
 check_code --> enter_open : Correct code

 enter_open --> open : * do_unlock()\n* Set state_timeout 10 s
 open --> enter_locked : state_timeout
Notice that this state diagram does not specify how to handle a button event
in the state open. So, you need to read in some side notes, that is, here:
that unspecified events shall be postponed (handled in some later state).
Also, the state diagram does not show that the code_length/0 call
must be handled in every state.

 Callback Mode: state_functions

Using state functions:
-module(code_lock).
-behaviour(gen_statem).
-define(NAME, code_lock_2).

-export([start_link/1,stop/0]).
-export([down/1,up/1,code_length/0]).
-export([init/1,callback_mode/0,terminate/3]).
-export([locked/3,open/3]).

start_link(Code) ->
 gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
stop() ->
 gen_statem:stop(?NAME).

down(Button) ->
 gen_statem:cast(?NAME, {down,Button}).
up(Button) ->
 gen_statem:cast(?NAME, {up,Button}).
code_length() ->
 gen_statem:call(?NAME, code_length).
init(Code) ->
 process_flag(trap_exit, true),
 Data = #{code => Code, length => length(Code), buttons => []},
 {ok, locked, Data}.

callback_mode() ->
 [state_functions,state_enter].

-define(HANDLE_COMMON,
 ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
%%
handle_common(cast, {down,Button}, Data) ->
 {keep_state, Data#{button => Button}};
handle_common(cast, {up,Button}, Data) ->
 case Data of
 #{button := Button} ->
 {keep_state, maps:remove(button, Data),
 [{next_event,internal,{button,Button}}]};
 #{} ->
 keep_state_and_data
 end;
handle_common({call,From}, code_length, #{code := Code}) ->
 {keep_state_and_data,
 [{reply,From,length(Code)}]}.
locked(enter, _OldState, Data) ->
 do_lock(),
 {keep_state, Data#{buttons := []}};
locked(state_timeout, button, Data) ->
 {keep_state, Data#{buttons := []}};
locked(
 internal, {button,Button},
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
 NewButtons =
 if
 length(Buttons) < Length ->
 Buttons;
 true ->
 tl(Buttons)
 end ++ [Button],
 if
 NewButtons =:= Code -> % Correct
 {next_state, open, Data};
	true -> % Incomplete | Incorrect
 {keep_state, Data#{buttons := NewButtons},
 [{state_timeout,30_000,button}]} % Time in milliseconds
 end;
?HANDLE_COMMON.
open(enter, _OldState, _Data) ->
 do_unlock(),
 {keep_state_and_data,
 [{state_timeout,10_000,lock}]}; % Time in milliseconds
open(state_timeout, lock, Data) ->
 {next_state, locked, Data};
open(internal, {button,_}, _) ->
 {keep_state_and_data, [postpone]};
?HANDLE_COMMON.

do_lock() ->
 io:format("Locked~n", []).
do_unlock() ->
 io:format("Open~n", []).

terminate(_Reason, State, _Data) ->
 State =/= locked andalso do_lock(),
 ok.

 Callback Mode: handle_event_function

This section describes what to change in the example to use one
handle_event/4 function. The previously used approach to first branch
depending on event does not work that well here because of
the state enter calls, so this example first branches depending on state:
-export([handle_event/4]).
callback_mode() ->
 [handle_event_function,state_enter].
%%
%% State: locked
handle_event(enter, _OldState, locked, Data) ->
 do_lock(),
 {keep_state, Data#{buttons := []}};
handle_event(state_timeout, button, locked, Data) ->
 {keep_state, Data#{buttons := []}};
handle_event(
 internal, {button,Button}, locked,
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
 NewButtons =
 if
 length(Buttons) < Length ->
 Buttons;
 true ->
 tl(Buttons)
 end ++ [Button],
 if
 NewButtons =:= Code -> % Correct
 {next_state, open, Data};
	true -> % Incomplete | Incorrect
 {keep_state, Data#{buttons := NewButtons},
 [{state_timeout,30_000,button}]} % Time in milliseconds
 end;
%%
%% State: open
handle_event(enter, _OldState, open, _Data) ->
 do_unlock(),
 {keep_state_and_data,
 [{state_timeout,10_000,lock}]}; % Time in milliseconds
handle_event(state_timeout, lock, open, Data) ->
 {next_state, locked, Data};
handle_event(internal, {button,_}, open, _) ->
 {keep_state_and_data,[postpone]};
%% Common events
handle_event(cast, {down,Button}, _State, Data) ->
 {keep_state, Data#{button => Button}};
handle_event(cast, {up,Button}, _State, Data) ->
 case Data of
 #{button := Button} ->
 {keep_state, maps:remove(button, Data),
 [{next_event,internal,{button,Button}},
 {state_timeout,30_000,button}]}; % Time in milliseconds
 #{} ->
 keep_state_and_data
 end;
handle_event({call,From}, code_length, _State, #{length := Length}) ->
 {keep_state_and_data,
 [{reply,From,Length}]}.
Notice that postponing buttons from the open state to the locked state
seems like a strange thing to do for a code lock, but it at least
illustrates event postponing.

 Filter the State

The example servers so far in this chapter print the full internal state
in the error log, for example, when killed by an exit signal or because of
an internal error. The state contains both the code lock code
and which digits that remain to unlock.
This state data can be regarded as sensitive, and maybe not what you want
in the error log because of some unpredictable event.
Another reason to filter the state can be that the state is too large to print,
as it fills the error log with uninteresting details.
To avoid this, you can format the internal state that gets in the error log
and gets returned from sys:get_status/1,2
by implementing function
Module:format_status/2,
for example like this:
...
-export([init/1,terminate/3,format_status/2]).
...

format_status(Opt, [_PDict,State,Data]) ->
 StateData =
	{State,
	 maps:filter(
	 fun (code, _) -> false;
	 (_, _) -> true
	 end,
	 Data)},
 case Opt of
	terminate ->
	 StateData;
	normal ->
	 [{data,[{"State",StateData}]}]
 end.
It is not mandatory to implement a
Module:format_status/2 function.
If you do not, a default implementation is used that does the same
as this example function without filtering the Data term, that is,
StateData = {State, Data}, in this example containing sensitive information.

 Complex State

The callback mode handle_event_function
enables using a non-atom state as described in section
Callback Modes, for example, a complex state term
like a tuple.
One reason to use this is when you have a state item that when changed
should cancel the state time-out, or one that affects
the event handling in combination with postponing events. We will go for
the latter and complicate the previous example by introducing
a configurable lock button (this is the state item in question),
which in the open state immediately locks the door, and an API function
set_lock_button/1 to set the lock button.
Suppose now that we call set_lock_button while the door is open,
and we have already postponed a button event that was the new lock button:
1> code_lock:start_link([a,b,c], x).
{ok,<0.666.0>}
2> code_lock:button(a).
ok
3> code_lock:button(b).
ok
4> code_lock:button(c).
ok
Open
5> code_lock:button(y).
ok
6> code_lock:set_lock_button(y).
x
% What should happen here? Immediate lock or nothing?
We could say that the button was pressed too early so it should not be
recognized as the lock button. Or we can make the lock button part of
the state so when we then change the lock button in the locked state,
the change becomes a state change and all postponed events are retried,
therefore the lock is immediately locked!
We define the state as {StateName, LockButton}, where StateName
is as before and LockButton is the current lock button:
-module(code_lock).
-behaviour(gen_statem).
-define(NAME, code_lock_3).

-export([start_link/2,stop/0]).
-export([button/1,set_lock_button/1]).
-export([init/1,callback_mode/0,terminate/3]).
-export([handle_event/4]).

start_link(Code, LockButton) ->
 gen_statem:start_link(
 {local,?NAME}, ?MODULE, {Code,LockButton}, []).
stop() ->
 gen_statem:stop(?NAME).

button(Button) ->
 gen_statem:cast(?NAME, {button,Button}).
set_lock_button(LockButton) ->
 gen_statem:call(?NAME, {set_lock_button,LockButton}).
init({Code,LockButton}) ->
 process_flag(trap_exit, true),
 Data = #{code => Code, length => length(Code), buttons => []},
 {ok, {locked,LockButton}, Data}.

callback_mode() ->
 [handle_event_function,state_enter].

%% State: locked
handle_event(enter, _OldState, {locked,_}, Data) ->
 do_lock(),
 {keep_state, Data#{buttons := []}};
handle_event(state_timeout, button, {locked,_}, Data) ->
 {keep_state, Data#{buttons := []}};
handle_event(
 cast, {button,Button}, {locked,LockButton},
 #{code := Code, length := Length, buttons := Buttons} = Data) ->
 NewButtons =
 if
 length(Buttons) < Length ->
 Buttons;
 true ->
 tl(Buttons)
 end ++ [Button],
 if
 NewButtons =:= Code -> % Correct
 {next_state, {open,LockButton}, Data};
	true -> % Incomplete | Incorrect
 {keep_state, Data#{buttons := NewButtons},
 [{state_timeout,30_000,button}]} % Time in milliseconds
 end;
%%
%% State: open
handle_event(enter, _OldState, {open,_}, _Data) ->
 do_unlock(),
 {keep_state_and_data,
 [{state_timeout,10_000,lock}]}; % Time in milliseconds
handle_event(state_timeout, lock, {open,LockButton}, Data) ->
 {next_state, {locked,LockButton}, Data};
handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
 {next_state, {locked,LockButton}, Data};
handle_event(cast, {button,_}, {open,_}, _Data) ->
 {keep_state_and_data,[postpone]};
%%
%% Common events
handle_event(
 {call,From}, {set_lock_button,NewLockButton},
 {StateName,OldLockButton}, Data) ->
 {next_state, {StateName,NewLockButton}, Data,
 [{reply,From,OldLockButton}]}.
do_lock() ->
 io:format("Locked~n", []).
do_unlock() ->
 io:format("Open~n", []).

terminate(_Reason, State, _Data) ->
 State =/= locked andalso do_lock(),
 ok.

 Hibernation

If you have many servers in one node and they have some state(s) in their
lifetime in which the servers can be expected to idle for a while, and the
amount of heap memory all these servers need is a problem, then the memory
footprint of a server can be minimized by hibernating it through
proc_lib:hibernate/3.
Note
It is rather costly to hibernate a process; see erlang:hibernate/3. It is
not something you want to do after every event.
We can in this example hibernate in the {open, _} state,
because what normally occurs in that state is that the state time-out
after a while triggers a transition to {locked, _}:
...
%%
%% State: open
handle_event(enter, _OldState, {open,_}, _Data) ->
 do_unlock(),
 {keep_state_and_data,
 [{state_timeout,10_000,lock}, % Time in milliseconds
 hibernate]};
...
The atom hibernate in the action list on the
last line when entering the {open, _} state is the only change. If any event
arrives in the {open, _}, state, we do not bother to rehibernate,
so the server stays awake after any event.
To change that we would need to insert action hibernate in more places.
For example, the state-independent set_lock_button operation
would have to use hibernate but only in the {open, _} state,
which would clutter the code.
Another not uncommon scenario is to use the
event time-out to trigger hibernation after a
certain time of inactivity. There is also a server start option
{hibernate_after, Timeout} for
start/3,4,
start_link/3,4, or
enter_loop/4,5,6 that may be used to
automatically hibernate the server.
This particular server probably does not use heap memory worth hibernating for.
To gain anything from hibernation, your server would have to produce
non-insignificant garbage during callback execution, for which this example
server can serve as a bad example.

gen_event Behaviour

It is recommended to read this section alongside gen_event in STDLIB.

 Event Handling Principles

In OTP, an event manager is a named object to which events can be sent. An
event can be, for example, an error, an alarm, or some information that is to
be logged.
In the event manager, zero, one, or many event handlers are installed. When
the event manager is notified about an event, the event is processed by all the
installed event handlers. For example, an event manager for handling errors can
by default have a handler installed that writes error messages to the
terminal. If the error messages during a certain period are to be saved to a
file as well, the user adds another event handler that does this. When logging
to the file is no longer necessary, this event handler is deleted.
An event manager is implemented as a process and each event handler is
implemented as a callback module.
The event manager essentially maintains a list of {Module, State} pairs, where
each Module is an event handler, and State is the internal state of that
event handler.

 Example

The callback module for the event handler writing error messages to the terminal
can look as follows:
-module(terminal_logger).
-behaviour(gen_event).

-export([init/1, handle_event/2, terminate/2]).

init(_Args) ->
 {ok, []}.

handle_event(ErrorMsg, State) ->
 io:format("***Error*** ~p~n", [ErrorMsg]),
 {ok, State}.

terminate(_Args, _State) ->
 ok.
The callback module for the event handler writing error messages to a file can
look as follows:
-module(file_logger).
-behaviour(gen_event).

-export([init/1, handle_event/2, terminate/2]).

init(File) ->
 {ok, Fd} = file:open(File, read),
 {ok, Fd}.

handle_event(ErrorMsg, Fd) ->
 io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
 {ok, Fd}.

terminate(_Args, Fd) ->
 file:close(Fd).
The code is explained in the next sections.

 Starting an Event Manager

To start an event manager for handling errors, as described in the previous
example, call the following function:
gen_event:start_link({local, error_man})
gen_event:start_link/1 spawns and links to a new event manager process.
The argument, {local, error_man}, specifies the name under which the
event manager should be locally registered. The name can also be given
as {global, Name} to register the event manager globally using
global:register_name/2.
If the name is omitted, the event manager is not registered. Instead its pid
must be used.
gen_event:start_link/1 must be used if the event manager is part of
a supervision tree, meaning that it was started by a supervisor. There
is another function, gen_event:start/1, to start a standalone event
manager that is not part of a supervision tree.

 Adding an Event Handler

The following example shows how to start an event manager and add an event
handler to it by using the shell:
1> gen_event:start({local, error_man}).
{ok,<0.31.0>}
2> gen_event:add_handler(error_man, terminal_logger, []).
ok
This function sends a message to the event manager registered as error_man,
telling it to add the event handler terminal_logger. The event manager calls
the callback function terminal_logger:init([]), where the argument [] is the
third argument to add_handler. init/1 is expected to return {ok, State},
where State is the internal state of the event handler.
init(_Args) ->
 {ok, []}.
Here, init/1 does not need any input data and ignores its argument. For
terminal_logger, the internal state is not used. For file_logger, the
internal state is used to save the open file descriptor.
init(File) ->
 {ok, Fd} = file:open(File, read),
 {ok, Fd}.

 Notifying about Events

3> gen_event:notify(error_man, no_reply).
Error no_reply
ok
error_man is the name of the event manager and no_reply is the event.
The event is made into a message and sent to the event manager. When the event
is received, the event manager calls handle_event(Event, State) for each
installed event handler, in the same order as they were added. The function is
expected to return a tuple {ok,State1}, where State1 is a new value for the
state of the event handler.
In terminal_logger:
handle_event(ErrorMsg, State) ->
 io:format("***Error*** ~p~n", [ErrorMsg]),
 {ok, State}.
In file_logger:
handle_event(ErrorMsg, Fd) ->
 io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
 {ok, Fd}.

 Deleting an Event Handler

4> gen_event:delete_handler(error_man, terminal_logger, []).
ok
This function sends a message to the event manager registered as error_man,
telling it to delete the event handler terminal_logger. The event manager
calls the callback function terminal_logger:terminate([], State), where the
argument [] is the third argument to delete_handler. terminate/2 is to be
the opposite of init/1 and do any necessary cleaning up. Its return value is
ignored.
For terminal_logger, no cleaning up is necessary:
terminate(_Args, _State) ->
 ok.
For file_logger, the file descriptor opened in init must be closed:
terminate(_Args, Fd) ->
 file:close(Fd).

 Stopping

When an event manager is stopped, it gives each of the installed event handlers
the chance to clean up by calling terminate/2, the same way as when deleting a
handler.

 In a Supervision Tree

If the event manager is part of a supervision tree, no stop function is needed.
The event manager is automatically terminated by its supervisor. Exactly how
this is done is defined by a shutdown strategy set in
the supervisor.

 Standalone Event Managers

An event manager can also be stopped by calling:
1> gen_event:stop(error_man).
ok

 Handling Other Messages

If the gen_event process is to be able to receive other messages
than events, the callback function handle_info(Info, State) must be
implemented to handle them. Examples of other messages are exit
messages if the event manager is linked to other processes than the
supervisor (for example via gen_event:add_sup_handler/3) and is
trapping exit signals.
handle_info({'EXIT', Pid, Reason}, State) ->
 %% Code to handle exits here.
 ...
 {noreply, State1}.
The final function to implement is code_change/3:
code_change(OldVsn, State, Extra) ->
 %% Code to convert state (and more) during code change.
 ...
 {ok, NewState}.

Supervisor Behaviour

It is recommended to read this section alongside supervisor in STDLIB.

 Supervision Principles

A supervisor is responsible for starting, stopping, and monitoring its child
processes. The basic idea of a supervisor is that it is to keep its child
processes alive by restarting them when necessary.
Which child processes to start and monitor is specified by a list of
child specifications. The child processes are started in
the order specified by this list, and are terminated in the reverse order.

 Example

The callback module for a supervisor starting the server from
gen_server Behaviour can look as follows:

-module(ch_sup).
-behaviour(supervisor).

-export([start_link/0]).
-export([init/1]).

start_link() ->
 supervisor:start_link(ch_sup, []).

init(_Args) ->
 SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
 ChildSpecs = [#{id => ch3,
 start => {ch3, start_link, []},
 restart => permanent,
 shutdown => brutal_kill,
 type => worker,
 modules => [ch3]}],
 {ok, {SupFlags, ChildSpecs}}.
The SupFlags variable in the return value from init/1 represents the
supervisor flags.
The ChildSpecs variable in the return value from init/1 is a list of
child specifications.

 Supervisor Flags

This is the type definition for the supervisor flags:
sup_flags() = #{strategy => strategy(), % optional
 intensity => non_neg_integer(), % optional
 period => pos_integer(), % optional
 auto_shutdown => auto_shutdown()} % optional
 strategy() = one_for_all
 | one_for_one
 | rest_for_one
 | simple_one_for_one
 auto_shutdown() = never
 | any_significant
 | all_significant
	strategy specifies the restart strategy.
	intensity and period specify the
maximum restart intensity.
	auto_shutdown specifies whether and when a supervisor should
automatically shut itself down.

 Restart Strategy

The restart strategy is specified by the strategy key in the supervisor flags
map returned by the callback function init:
SupFlags = #{strategy => Strategy, ...}
The strategy key is optional in this map. If it is not given, it defaults to
one_for_one.
Note
For simplicity, the diagrams shown in this section display a setup where all
the depicted children are assumed to have a
restart type of permanent.

 one_for_one

If a child process terminates, only that process is restarted.

title: One For One Supervision

flowchart TD
 subgraph Legend
 direction LR
 t(()) ~~~ l1[Terminated Process]
 p(()) ~~~ l2[Process Restarted by the Supervisor]
 end

 subgraph graph[" "]
 s[Supervisor]
 s --- p1((P1))
 s --- p2((P2))
 s --- p3((P3))
 s --- pn((Pn))
 end

 classDef term fill:#ff8888,color:black;
 classDef restarted stroke:#00aa00,stroke-width:3px;
 classDef legend fill-opacity:0,stroke-width:0px;

 class p2,t term;
 class p2,p restarted;
 class l1,l2 legend;

 one_for_all

If a child process terminates, all remaining child processes are
terminated. Subsequently, all child processes, including the
terminated one, are restarted.

title: One For All Supervision

flowchart TD
 subgraph Legend
 direction LR
 t(()) ~~~ l1[Terminated Process]
 st(()) ~~~ l2[Process Terminated by the Supervisor]
 p(()) ~~~ l3[Process Restarted by the Supervisor]
 l4["Note:

 Processes are terminated right to left
 Processes are restarted left to right"]

 end

 subgraph graph[" "]
 s[Supervisor]
 s --- p1((P1))
 s --- p2((P2))
 s --- p3((P3))
 s --- pn((Pn))
 end

 classDef term fill:#ff8888,color:black;
 classDef sterm fill:#ffaa00,color:black;
 classDef restarted stroke:#00aa00,stroke-width:3px;
 classDef legend fill-opacity:0,stroke-width:0px;

 class p2,t term;
 class p1,p3,pn,st sterm;
 class p1,p2,p3,pn,p restarted;
 class l1,l2,l3,l4 legend;

 rest_for_one

If a child process terminates, the child processes after the
terminated process in start order are terminated. Subsequently, the
terminated child process and the remaining child processes are
restarted.

title: Rest For One Supervision

flowchart TD
 subgraph Legend
 direction LR
 t(()) ~~~ l1[Terminated Process]
 st(()) ~~~ l2[Process Terminated by the Supervisor]
 p(()) ~~~ l3[Process Restarted by the Supervisor]
 l4["Note:

 Processes are terminated right to left
 Processes are restarted left to right"]

 end

 subgraph graph[" "]
 s[Supervisor]
 s --- p1((P1))
 s --- p2((P2))
 s --- p3((P3))
 s --- pn((Pn))
 end

 classDef term fill:#ff8888,color:black;
 classDef sterm fill:#ffaa00,color:black;
 classDef restarted stroke:#00aa00,stroke-width:3px;
 classDef legend fill-opacity:0,stroke-width:0px;

 class p2,t term;
 class p3,pn,st sterm;
 class p2,p3,pn,p restarted;
 class l1,l2,l3,l4 legend;

 simple_one_for_one

See simple-one-for-one supervisors.

 Maximum Restart Intensity

The supervisors have a built-in mechanism to limit the number of restarts which
can occur in a given time interval. This is specified by the two keys
intensity and period in the supervisor flags map returned by the callback
function init:
SupFlags = #{intensity => MaxR, period => MaxT, ...}
If more than MaxR number of restarts occur in the last MaxT seconds, the
supervisor terminates all the child processes and then itself. The termination
reason for the supervisor itself in that case will be shutdown.
When the supervisor terminates, then the next higher-level supervisor takes some
action. It either restarts the terminated supervisor or terminates itself.
The intention of the restart mechanism is to prevent a situation where a process
repeatedly dies for the same reason, only to be restarted again.
The keys intensity and period are optional in the supervisor flags map. If
they are not given, they default to 1 and 5, respectively.

 Tuning the intensity and period

The default values were chosen to be safe for most systems, even with
deep supervision hierarchies, but you will probably want to tune the
settings for your particular use case.
First, the intensity decides how big bursts of restarts you want to tolerate.
For example, you might want to accept a burst of at most 5 or 10 attempts, even
within the same second, if it results in a successful restart.
Second, you need to consider the sustained failure rate, if crashes keep
happening but not often enough to make the supervisor give up. If you set
intensity to 10 and set the period as low as 1, the supervisor will allow child
processes to keep restarting up to 10 times per second, forever, filling your
logs with crash reports until someone intervenes manually.
You should therefore set the period to be long enough that you can accept that
the supervisor keeps going at that rate. For example, if an intensity value
of 5 is chosen, setting the period to 30 seconds will give you at
most one restart per 6 seconds for any longer period of time, which means that
your logs will not fill up too quickly, and you will have a chance to observe the
failures and apply a fix.
These choices depend a lot on your problem domain. If you do not have real time
monitoring and ability to fix problems quickly, for example in an embedded
system, you might want to accept at most one restart per minute before the
supervisor should give up and escalate to the next level to try to clear the
error automatically. On the other hand, if it is more important that you keep
trying even at a high failure rate, you might want a sustained rate of as much
as 1-2 restarts per second.
Avoiding common mistakes:
	Do not forget to consider the burst rate. If you set intensity to 1 and period
to 6, it gives the same sustained error rate as 5/30 or 10/60, but will not
allow even 2 restart attempts in quick succession. This is probably not what
you wanted.

	Do not set the period to a very high value if you want to tolerate bursts. If
you set intensity to 5 and period to 3600 (one hour), the supervisor will
allow a short burst of 5 restarts, but then gives up if it sees another single
restart almost an hour later. You probably want to regard those crashes as
separate incidents, so setting the period to 5 or 10 minutes will be more
reasonable.

	If your application has multiple levels of supervision, do not set
the restart intensities to the same values on all levels. Keep in mind that
the total number of restarts (before the top level supervisor gives up and
terminates the application) will be the product of the intensity values of all
the supervisors above the failing child process.
For example, if the top level allows 10 restarts, and the next level also
allows 10, a crashing child below that level will be restarted 100 times,
which is probably excessive. Allowing at most 3 restarts for the top level
supervisor might be a better choice in this case.

 Automatic Shutdown

A supervisor can be configured to automatically shut itself down when
significant children terminate.
This is useful when a supervisor represents a work unit of cooperating children,
as opposed to independent workers. When the work unit has finished its work,
that is, when any or all significant child processes have terminated, the
supervisor should then shut down by terminating all remaining child processes in
reverse start order according to the respective shutdown specifications, and
then itself.
Automatic shutdown is specified by the auto_shutdown key in the supervisor
flags map returned by the callback function init:
SupFlags = #{auto_shutdown => AutoShutdown, ...}
The auto_shutdown key is optional in this map. If it is not given, it defaults
to never.
Note
The automatic shutdown facility only applies when significant children
terminate by themselves, not when their termination was caused by
the supervisor. Specifically, neither the termination of a child as a
consequence of a sibling's termination in the one_for_all or rest_for_one
strategies nor the manual termination of a child by
supervisor:terminate_child/2 will trigger an automatic shutdown.

 never

Automatic shutdown is disabled.
In this mode, specifying significant children is not accepted. If the
child specs returned from init contain significant children, the
supervisor will refuse to start. Attempts to start significant
children dynamically will be rejected.
This is the default setting.

 any_significant

The supervisor will automatically shut itself down when any significant child
terminates, that is, when a transient significant child terminates normally or
when a temporary significant child terminates normally or abnormally.

 all_significant

The supervisor will automatically shut itself down when all significant
children have terminated, that is, when the last active significant child
terminates. The same rules as for any_significant apply.
Warning
The automatic shutdown feature was introduced in OTP 24.0, but applications
using this feature will also compile and run with older OTP versions.
However, such applications, when compiled with an OTP version that predates
the appearance of the automatic shutdown feature, will leak processes because
the automatic shutdowns they rely on will not happen.
It is up to implementors to take proper precautions if they expect that their
applications may be compiled with older OTP versions.
Warning
Top supervisors of Applications should not be configured
for automatic shutdown, because when the top supervisor exits, the application
terminates. If the application is permanent, all other applications and the
runtime system are terminated as well.
Warning
Supervisors configured for automatic shutdown should not be made
permanent children of their respective parent
supervisors, as they would be restarted immediately after having automatically
shut down, only to shut down automatically again after a while, and may thus
exhaust the Maximum Restart Intensity of the
parent supervisor.

 Child Specification

The type definition for a child specification is as follows:
child_spec() = #{id => child_id(), % mandatory
 start => mfargs(), % mandatory
 restart => restart(), % optional
 significant => significant(), % optional
 shutdown => shutdown(), % optional
 type => worker(), % optional
 modules => modules()} % optional
 child_id() = term()
 mfargs() = {M :: module(), F :: atom(), A :: [term()]}
 modules() = [module()] | dynamic
 restart() = permanent | transient | temporary
 significant() = boolean()
 shutdown() = brutal_kill | timeout()
 worker() = worker | supervisor
	id is used to identify the child specification internally by the supervisor.
The id key is mandatory.
Note that this identifier occasionally has been called "name". As far as
possible, the terms "identifier" or "id" are now used but in order to keep
backwards compatibility, some occurrences of "name" can still be found, for
example in error messages.

	start defines the function call used to start the child process. It is a
module-function-arguments tuple used as apply(M, F, A).
It is to be (or result in) a call to any of the following:
	supervisor:start_link/2,3
	gen_server:start_link/3,4
	gen_statem:start_link/3,4
	gen_event:start_link/0,1,2
	A function compliant with these functions. For details, see
supervisor.

The start key is mandatory.

	 restart defines when a terminated child process is to be
restarted.
	A permanent child process is always restarted.
	A temporary child process is never restarted (not even when the supervisor
restart strategy is rest_for_one or one_for_all and a sibling death
causes the temporary process to be terminated).
	A transient child process is restarted only if it terminates abnormally,
that is, with an exit reason other than normal, shutdown, or
{shutdown,Term}.

The restart key is optional. If it is not given, the default value
permanent will be used.

	 significant defines whether a child is considered
significant for automatic self-shutdown of
the supervisor.
It is invalid to set this option to true for a child with
restart type permanent or in a supervisor with
auto_shutdown set to never.

	 shutdown defines how a child process is to be terminated.
	brutal_kill means that the child process is unconditionally terminated
using exit(Child, kill).
	An integer time-out value means that the supervisor tells the child process
to terminate by calling exit(Child, shutdown) and then waits
for an exit signal back. If no exit signal is received within the specified
time, the child process is unconditionally terminated using
exit(Child, kill).
	If the child process is another supervisor, it should be set to infinity
to give the subtree enough time to shut down. It is also allowed to set it
to infinity if the child process is a worker.

Warning
Setting the shutdown time to anything other than infinity for a child of
type supervisor can cause a race condition where the child in question
unlinks its own children, but fails to terminate them before it is killed.
Be careful when setting the shutdown time to infinity when the child
process is a worker. Because, in this situation, the termination of the
supervision tree depends on the child process; it must be implemented in a
safe way and its cleanup procedure must always return.
The shutdown key is optional. If it is not given, and the child is of type
worker, the default value 5000 will be used; if the child is of type
supervisor, the default value infinity will be used.

	type specifies whether the child process is a supervisor or a worker.
The type key is optional. If it is not given, the default value worker
will be used.

	modules has to be a list consisting of a single element. The value
of that element depends on the behaviour of the process:
	If the child process is a gen_event, the element has to be the atom
dynamic.
	Otherwise, the element should be Module, where Module is the
name of the callback module.

This information is used by the release handler during upgrades and
downgrades; see Release Handling.
The modules key is optional. If it is not given, it defaults to [M], where
M comes from the child's start {M,F,A}.

Example: The child specification to start the server ch3 in the previous
example look as follows:
#{id => ch3,
 start => {ch3, start_link, []},
 restart => permanent,
 shutdown => brutal_kill,
 type => worker,
 modules => [ch3]}
or simplified, relying on the default values:
#{id => ch3,
 start => {ch3, start_link, []},
 shutdown => brutal_kill}
Example: A child specification to start the event manager from the chapter about
gen_event:
#{id => error_man,
 start => {gen_event, start_link, [{local, error_man}]},
 modules => dynamic}
Both server and event manager are registered processes which can be expected to
be always accessible. Thus they are specified to be permanent.
ch3 does not need to do any cleaning up before termination. Thus, no shutdown
time is needed, but brutal_kill is sufficient. error_man can need some time
for the event handlers to clean up, thus the shutdown time is set to 5000 ms
(which is the default value).
Example: A child specification to start another supervisor:
#{id => sup,
 start => {sup, start_link, []},
 restart => transient,
 type => supervisor} % will cause default shutdown=>infinity

 Starting a Supervisor

In the previous example, the supervisor is started by calling
ch_sup:start_link():
start_link() ->
 supervisor:start_link(ch_sup, []).
ch_sup:start_link calls function supervisor:start_link/2, which spawns and
links to a new process, a supervisor.
	The first argument, ch_sup, is the name of the callback module, that is, the
module where the init callback function is located.
	The second argument, [], is a term that is passed as is to the callback
function init. Here, init does not need any data and ignores the argument.

In this case, the supervisor is not registered. Instead its pid must be used. A
name can be specified by calling
supervisor:start_link({local, Name}, Module, Args)
or
supervisor:start_link({global, Name}, Module, Args).
The new supervisor process calls the callback function ch_sup:init([]). init
has to return {ok, {SupFlags, ChildSpecs}}:
init(_Args) ->
 SupFlags = #{},
 ChildSpecs = [#{id => ch3,
 start => {ch3, start_link, []},
 shutdown => brutal_kill}],
 {ok, {SupFlags, ChildSpecs}}.
Subsequently, the supervisor starts its child processes according to the child
specifications in the start specification. In this case there is a single child
process, called ch3.
supervisor:start_link/3 is synchronous. It does not return until all child
processes have been started.

 Adding a Child Process

In addition to the static supervision tree as defined by the child
specifications, dynamic child processes can be added to an existing
supervisor by calling supervisor:start_child(Sup, ChildSpec).
Sup is the pid, or name, of the supervisor. ChildSpec is a
child specification.
Child processes added using start_child/2 behave in the same way as the other
child processes, with one important exception: if a supervisor dies and is
recreated, then all child processes that were dynamically added to the
supervisor are lost.

 Stopping a Child Process

Any child process, static or dynamic, can be stopped in accordance with the
shutdown specification by calling
supervisor:terminate_child(Sup, Id).
Stopping a significant child of a supervisor
configured for automatic shutdown will not
trigger an automatic shutdown.
The child specification for a stopped child process is deleted by
calling supervisor:delete_child(Sup, Id).
Sup is the pid, or name, of the supervisor. Id is the value associated with
the id key in the child specification.
As with dynamically added child processes, the effects of deleting a static
child process are lost if the supervisor itself restarts.

 Simplified one_for_one Supervisors

A supervisor with restart strategy simple_one_for_one is a simplified
one_for_one supervisor, where all child processes are dynamically added
instances of the same process.
The following is an example of a callback module for a simple_one_for_one
supervisor:
-module(simple_sup).
-behaviour(supervisor).

-export([start_link/0]).
-export([init/1]).

start_link() ->
 supervisor:start_link(simple_sup, []).

init(_Args) ->
 SupFlags = #{strategy => simple_one_for_one,
 intensity => 0,
 period => 1},
 ChildSpecs = [#{id => call,
 start => {call, start_link, []},
 shutdown => brutal_kill}],
 {ok, {SupFlags, ChildSpecs}}.
When started, the supervisor does not start any child
processes. Instead, all child processes need to be added dynamically by
calling supervisor:start_child(Sup, List).
Sup is the pid, or name, of the supervisor. List is an arbitrary list of
terms, which are added to the list of arguments specified in the child
specification. If the start function is specified as {M, F, A}, the child
process is started by calling apply(M, F, A++List).
For example, adding a child to simple_sup above:
supervisor:start_child(Pid, [id1])
The result is that the child process is started by calling
apply(call, start_link, []++[id1]), or actually:
call:start_link(id1)
A child under a simple_one_for_one supervisor can be terminated with the
following:
supervisor:terminate_child(Sup, Pid)
Sup is the pid, or name, of the supervisor and Pid is the pid of the child.
Because a simple_one_for_one supervisor can have many children, it shuts them
all down asynchronously. This means that the children will do their cleanup in
parallel and therefore the order in which they are stopped is not defined.
Starting, restarting, and manually terminating children are synchronous operations
which are executed in the context of the supervisor process. This means
that the supervisor process will be blocked while it is performing any of those
operations. Child processes are responsible for keeping their start and shutdown
phases as short as possible.

 Stopping

Since the supervisor is part of a supervision tree, it is
automatically terminated by its supervisor. When asked to shut down, a
supervisor terminates all child processes in reverse start order
according to the respective shutdown specifications before terminating
itself.
If the supervisor is configured for
automatic shutdown on termination of any or
all significant children, it will shut down
itself when any or the last active significant child terminates, respectively.
The shutdown itself follows the same procedure as described above, that is, the
supervisor terminates all remaining child processes in reverse start order
before terminating itself.

 Manual stopping versus Automatic Shutdown

For several reasons, a supervisor should not be stopped manually via
supervisor:terminate_child/2 from a child located in its own tree.
	The child process will have to know the pids or registered names not only of
the supervisor it wants to stop, but also that of the supervisor's parent
supervisor, in order to tell the parent supervisor to stop the supervisor it
wants to stop. This can make restructuring a supervision tree difficult.
	supervisor:terminate_child/2 is a blocking call that will only return after
the parent supervisor has finished the shutdown of the supervisor that should
be stopped. Unless the call is made from a spawned process, this will result
in a deadlock, as the supervisor waits for the child to exit as part of its
shutdown procedure, whereas the child waits for the supervisor to shut down.
If the child is trapping exits, this deadlock will last until the
shutdown timeout for the child expires.
	When a supervisor is stopping a child, it will wait for the shutdown to
complete before accepting other calls, that is, the supervisor will be
unresponsive until then. If the termination takes some time to complete,
especially when the considerations outlined in the previous point were not
taken into account carefully, said supervisor might become unresponsive for a
long time.

Instead, it is generally a better approach to rely on
Automatic Shutdown.
	A child process does not need to know anything about its supervisor and its
respective parent, not even that it is part of a supervision tree in the
first place. It is instead only the supervisor which hosts the child who must
know which of its children are significant
ones, and when to shut itself down.
	A child process does not need to do anything special to shut down the work
unit it is part of. All it needs to do is terminate normally when it has
finished the task it was started for.
	A supervisor that is automatically shutting itself down will perform the
required shutdown steps fully independent of its parent supervisor. The
parent supervisor will only notice that its child supervisor has terminated
in the end. As the parent supervisor is not involved in the shutdown process,
it will not be blocked.

sys and proc_lib

The sys module has functions for simple debugging of processes implemented
using behaviours. It also has functions that, together with functions in the
proc_lib module, can be used to implement a special process that complies to
the OTP design principles without using a standard behaviour. These functions
can also be used to implement user-defined (non-standard) behaviours.
Both sys and proc_lib belong to the STDLIB application.

 Simple Debugging

The sys module has functions for simple debugging of processes implemented
using behaviours. The code_lock example from
gen_statem Behaviour is used to illustrate this:
Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]

Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
1> code_lock:start_link([1,2,3,4]).
Lock
{ok,<0.90.0>}
2> sys:statistics(code_lock, true).
ok
3> sys:trace(code_lock, true).
ok
4> code_lock:button(1).
DBG code_lock receive cast {button,1} in state locked
ok
DBG code_lock consume cast {button,1} in state locked
5> code_lock:button(2).
DBG code_lock receive cast {button,2} in state locked
ok
DBG code_lock consume cast {button,2} in state locked
6> code_lock:button(3).
DBG code_lock receive cast {button,3} in state locked
ok
DBG code_lock consume cast {button,3} in state locked
7> code_lock:button(4).
DBG code_lock receive cast {button,4} in state locked
ok
Unlock
DBG code_lock consume cast {button,4} in state locked => open
DBG code_lock start_timer {state_timeout,10000,lock,[]} in state open
DBG code_lock receive state_timeout lock in state open
Lock
DBG code_lock consume state_timeout lock in state open => locked
8> sys:statistics(code_lock, get).
{ok,[{start_time,{{2024,5,3},{8,11,1}}},
 {current_time,{{2024,5,3},{8,11,48}}},
 {reductions,4098},
 {messages_in,5},
 {messages_out,0}]}
9> sys:statistics(code_lock, false).
ok
10> sys:trace(code_lock, false).
ok
11> sys:get_status(code_lock).
{status,<0.90.0>,
 {module,gen_statem},
 [[{'$initial_call',{code_lock,init,1}},
 {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
 <0.64.0>,kernel_sup,<0.47.0>]}],
 running,<0.88.0>,[],
 [{header,"Status for state machine code_lock"},
 {data,[{"Status",running},
 {"Parent",<0.88.0>},
 {"Modules",[code_lock]},
 {"Time-outs",{0,[]}},
 {"Logged Events",[]},
 {"Postponed",[]}]},
 {data,[{"State",
 {locked,#{code => [1,2,3,4],
 length => 4,buttons => []}}}]}]]}

 Special Processes

This section describes how to write a process that complies to the OTP design
principles, without using a standard behaviour. Such a process is to:
	Be started in a way that makes the process fit into a supervision tree
	Support the sys debug facilities
	Take care of system messages.

System messages are messages with a special meaning, used in the supervision
tree. Typical system messages are requests for trace output, and requests to
suspend or resume process execution (used during release handling). Processes
implemented using standard behaviours automatically understand these messages.

 Example

Here follows the simple server from
Overview,
implemented using sys and proc_lib to fit into a supervision tree:
-module(ch4).
-export([start_link/0]).
-export([alloc/0, free/1]).
-export([init/1]).
-export([system_continue/3, system_terminate/4,
 write_debug/3,
 system_get_state/1, system_replace_state/2]).

start_link() ->
 proc_lib:start_link(ch4, init, [self()]).

alloc() ->
 ch4 ! {self(), alloc},
 receive
 {ch4, Res} ->
 Res
 end.

free(Ch) ->
 ch4 ! {free, Ch},
 ok.

init(Parent) ->
 register(ch4, self()),
 Chs = channels(),
 Deb = sys:debug_options([]),
 proc_lib:init_ack(Parent, {ok, self()}),
 loop(Chs, Parent, Deb).

loop(Chs, Parent, Deb) ->
 receive
 {From, alloc} ->
 Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
 ch4, {in, alloc, From}),
 {Ch, Chs2} = alloc(Chs),
 From ! {ch4, Ch},
 Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
 ch4, {out, {ch4, Ch}, From}),
 loop(Chs2, Parent, Deb3);
 {free, Ch} ->
 Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
 ch4, {in, {free, Ch}}),
 Chs2 = free(Ch, Chs),
 loop(Chs2, Parent, Deb2);

 {system, From, Request} ->
 sys:handle_system_msg(Request, From, Parent,
 ch4, Deb, Chs)
 end.

system_continue(Parent, Deb, Chs) ->
 loop(Chs, Parent, Deb).

system_terminate(Reason, _Parent, _Deb, _Chs) ->
 exit(Reason).

system_get_state(Chs) ->
 {ok, Chs}.

system_replace_state(StateFun, Chs) ->
 NChs = StateFun(Chs),
 {ok, NChs, NChs}.

write_debug(Dev, Event, Name) ->
 io:format(Dev, "~p event = ~p~n", [Name, Event]).
As it is not relevant to the example, the channel handling functions have been
omitted. To compile this example, the
implementation of channel handling
needs to be added to the module.
Here is an example showing how the debugging functions in the sys
module can be used for ch4:
% erl
Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]

Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
1> ch4:start_link().
{ok,<0.90.0>}
2> sys:statistics(ch4, true).
ok
3> sys:trace(ch4, true).
ok
4> ch4:alloc().
ch4 event = {in,alloc,<0.88.0>}
ch4 event = {out,{ch4,1},<0.88.0>}
1
5> ch4:free(ch1).
ch4 event = {in,{free,ch1}}
ok
6> sys:statistics(ch4, get).
{ok,[{start_time,{{2024,5,3},{8,26,13}}},
 {current_time,{{2024,5,3},{8,26,49}}},
 {reductions,202},
 {messages_in,2},
 {messages_out,1}]}
7> sys:statistics(ch4, false).
ok
8> sys:trace(ch4, false).
ok
9> sys:get_status(ch4).
{status,<0.90.0>,
 {module,ch4},
 [[{'$initial_call',{ch4,init,1}},
 {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
 <0.64.0>,kernel_sup,<0.47.0>]}],
 running,<0.88.0>,[],
 {[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19|...]}]}

 Starting the Process

A function in the proc_lib module is to be used to start the process. Several
functions are available, for example,
proc_lib:spawn_link/3,4
for asynchronous start and
proc_lib:start_link/3,4,5 for synchronous start.
Information necessary for a process within a supervision tree, such as
details on ancestors and the initial call, is stored when a process
is started through one of these functions.
If the process terminates with a reason other than normal or shutdown, a
crash report is generated. For more information about the crash report, see
Logging in Kernel User's Guide.
In the example, synchronous start is used. The process starts by calling
ch4:start_link():
start_link() ->
 proc_lib:start_link(ch4, init, [self()]).
ch4:start_link/0 calls proc_lib:start_link/3, which takes a module
name, a function name, and an argument list as arguments. It then
spawns a new process and establishes a link. The new process starts
by executing the given function, here ch4:init(Pid), where Pid is
the pid of the parent process (obtained by the call to
self() in the call to proc_lib:start_link/3).
All initialization, including name registration, is done in init/1. The new
process has to acknowledge that it has been started to the parent:
init(Parent) ->
 ...
 proc_lib:init_ack(Parent, {ok, self()}),
 loop(...).
proc_lib:start_link/3 is synchronous and does not return until
proc_lib:init_ack/1,2 or
proc_lib:init_fail/2,3 has been called,
or the process has exited.

 Debugging

To support the debug facilities in sys, a debug structure is needed. The
Deb term is initialized using sys:debug_options/1:
init(Parent) ->
 ...
 Deb = sys:debug_options([]),
 ...
 loop(Chs, Parent, Deb).
sys:debug_options/1 takes a list of options. Given an empty list as in this
example means that debugging is initially disabled. For information about the
possible options, see sys in STDLIB.
For each system event to be logged or traced, the following function
is to be called:
sys:handle_debug(Deb, Func, Info, Event) => Deb1
The arguments have the follow meaning:
	Deb is the debug structure as returned from sys:debug_options/1.
	Func is a fun specifying a (user-defined) function used to format trace
output. For each system event, the format function is called as
Func(Dev, Event, Info), where:	Dev is the I/O device to which the output is to be printed. See io
in STDLIB.
	Event and Info are passed as-is from the call to sys:handle_debug/4.

	Info is used to pass more information to Func. It can be any term, and it
is passed as-is.
	Event is the system event. It is up to the user to define what a system
event is and how it is to be represented. Typically, at least incoming and
outgoing messages are considered system events and represented by the tuples
{in,Msg[,From]} and {out,Msg,To[,State]}, respectively.

sys:handle_debug/4 returns an updated debug structure Deb1.
In the example, sys:handle_debug/4 is called for each incoming and
outgoing message. The format function Func is the function
ch4:write_debug/3, which prints the message using io:format/3.
loop(Chs, Parent, Deb) ->
 receive
 {From, alloc} ->
 Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
 ch4, {in, alloc, From}),
 {Ch, Chs2} = alloc(Chs),
 From ! {ch4, Ch},
 Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
 ch4, {out, {ch4, Ch}, From}),
 loop(Chs2, Parent, Deb3);
 {free, Ch} ->
 Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
 ch4, {in, {free, Ch}}),
 Chs2 = free(Ch, Chs),
 loop(Chs2, Parent, Deb2);
 ...
 end.

write_debug(Dev, Event, Name) ->
 io:format(Dev, "~p event = ~p~n", [Name, Event]).

 Handling System Messages

System messages are received as:
{system, From, Request}
The content and meaning of these messages are not to be interpreted by the
process. Instead the following function is to be called:
sys:handle_system_msg(Request, From, Parent, Module, Deb, State)
The arguments have the following meaning:
	Request and From from the received system message are to be
passed as-is to the call to sys:handle_system_msg/6.
	Parent is the pid of the parent process.
	Module is the name of the module implementing the speciall process.
	Deb is the debug structure.
	State is a term describing the internal state and is passed on to
Module:system_continue/3, Module:system_terminate/4/
Module:system_get_state/1, and Module:system_replace_state/2.

sys:handle_system_msg/6 does not return. It handles the system
message and eventually calls either of the following functions:
	Module:system_continue(Parent, Deb, State) - if process execution is to
continue.

	Module:system_terminate(Reason, Parent, Deb, State) - if the
process is to terminate.

While handling the system message, sys:handle_system_msg/6 can call
one of the following functions:
	Module:system_get_state(State) - if the process is to return its state.

	Module:system_replace_state(StateFun, State) - if the process is
to replace its state using the fun StateFun fun. See sys:replace_state/3
for more information.

	system_code_change(Misc, Module, OldVsn, Extra) - if the process is to
perform a code change.

A process in a supervision tree is expected to terminate with the same reason as
its parent.
In the example, system messages are handed by the following code:
loop(Chs, Parent, Deb) ->
 receive
 ...

 {system, From, Request} ->
 sys:handle_system_msg(Request, From, Parent,
 ch4, Deb, Chs)
 end.

system_continue(Parent, Deb, Chs) ->
 loop(Chs, Parent, Deb).

system_terminate(Reason, Parent, Deb, Chs) ->
 exit(Reason).

system_get_state(Chs) ->
 {ok, Chs, Chs}.

system_replace_state(StateFun, Chs) ->
 NChs = StateFun(Chs),
 {ok, NChs, NChs}.
If a special process is configured to trap exits, it must take notice
of 'EXIT' messages from its parent process and terminate using the
same exit reason once the parent process has terminated.
Here is an example:
init(Parent) ->
 ...,
 process_flag(trap_exit, true),
 ...,
 loop(Parent).

loop(Parent) ->
 receive
 ...
 {'EXIT', Parent, Reason} ->
 %% Clean up here, if needed.
 exit(Reason);
 ...
 end.

 User-Defined Behaviours

 To implement a user-defined behaviour, write code similar
to code for a special process, but call functions in a callback module for
handling specific tasks.
If the compiler is to warn for missing callback functions, as it does for the
OTP behaviours, add -callback attributes in the behaviour module to describe
the expected callbacks:
-callback Name1(Arg1_1, Arg1_2, ..., Arg1_N1) -> Res1.
-callback Name2(Arg2_1, Arg2_2, ..., Arg2_N2) -> Res2.
...
-callback NameM(ArgM_1, ArgM_2, ..., ArgM_NM) -> ResM.
NameX are the names of the expected callbacks. ArgX_Y and ResX are types
as they are described in
Types and Function Specifications. The whole syntax of
the -spec attribute is supported by the -callback attribute.
Callback functions that are optional for the user of the behaviour to implement
are specified by use of the -optional_callbacks attribute:
-optional_callbacks([OptName1/OptArity1, ..., OptNameK/OptArityK]).
where each OptName/OptArity specifies the name and arity of a callback
function. Note that the -optional_callbacks attribute is to be used together
with the -callback attribute; it cannot be combined with the
behaviour_info() function described below.
Tools that need to know about optional callback functions can call
Behaviour:behaviour_info(optional_callbacks) to get a list of all optional
callback functions.
Note
We recommend using the -callback attribute rather than the
behaviour_info() function. The reason is that the extra type information can
be used by tools to produce documentation or find discrepancies.
As an alternative to the -callback and -optional_callbacks attributes you
may directly implement and export behaviour_info():
behaviour_info(callbacks) ->
 [{Name1, Arity1},...,{NameN, ArityN}].
where each {Name, Arity} specifies the name and arity of a callback function.
This function is otherwise automatically generated by the compiler using the
-callback attributes.
When the compiler encounters the module attribute -behaviour(Behaviour). in a
module Mod, it calls Behaviour:behaviour_info(callbacks) and compares the
result with the set of functions actually exported from Mod, and issues a
warning if any callback function is missing.
Example:
%% User-defined behaviour module
-module(simple_server).
-export([start_link/2, init/3, ...]).

-callback init(State :: term()) -> 'ok'.
-callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
-callback terminate() -> 'ok'.
-callback format_state(State :: term()) -> term().

-optional_callbacks([format_state/1]).

%% Alternatively you may define:
%%
%% -export([behaviour_info/1]).
%% behaviour_info(callbacks) ->
%% [{init,1},
%% {handle_req,2},
%% {terminate,0}].

start_link(Name, Module) ->
 proc_lib:start_link(?MODULE, init, [self(), Name, Module]).

init(Parent, Name, Module) ->
 register(Name, self()),
 ...,
 Dbg = sys:debug_options([]),
 proc_lib:init_ack(Parent, {ok, self()}),
 loop(Parent, Module, Deb, ...).

...
In a callback module:
-module(db).
-behaviour(simple_server).

-export([init/1, handle_req/2, terminate/0]).

...
The contracts specified with -callback attributes in behaviour modules can be
further refined by adding -spec attributes in callback modules. This can be
useful as -callback contracts are usually generic. The same callback module
with contracts for the callbacks:
-module(db).
-behaviour(simple_server).

-export([init/1, handle_req/2, terminate/0]).

-record(state, {field1 :: [atom()], field2 :: integer()}).

-type state() :: #state{}.
-type request() :: {'store', term(), term()};
 {'lookup', term()}.

...

-spec handle_req(request(), state()) -> {'ok', term()}.

...
Each -spec contract is to be a subtype of the respective -callback contract.

Applications

It is recommended to read this section alongside app
and application in Kernel.

 Application Concept

After creating code to implement a specific functionality, you might
consider transforming it into an application — a component that can be
started and stopped as a unit, as well as reused in other systems.
The steps to create an application is as follows:
	Create an application callback
module that describes how the
application is to be started and stopped.

	Create an application specification and place it in an
application resource file. Among
other things, this file specifies which modules the application
consists of and the name of the callback module.

If you use systools, the Erlang/OTP tools for packaging code (see
Releases), the code for each application is placed in a
separate directory following a pre-defined
directory structure.

 Application Callback Module

How to start and stop the code for the application, including its supervision
tree, is described by two callback functions:
start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
stop(State)
	start/2 is called when starting the application and is to create the
supervision tree by starting the top supervisor. It is expected to return the
pid of the top supervisor and an optional term, State, which defaults to
[]. This term is passed as is to stop/1.
	StartType is usually the atom normal. It has other values only in the case
of a takeover or failover; see
Distributed Applications.
	StartArgs is defined by the key mod in the
application resource file.
	stop/1 is called after the application has been stopped and is to do any
necessary cleaning up. The actual stopping of the application, that is,
shutting down the supervision tree, is handled automatically as described in
Starting and Stopping Applications.

Example of an application callback module for packaging the supervision tree
from Supervisor Behaviour:
-module(ch_app).
-behaviour(application).

-export([start/2, stop/1]).

start(_Type, _Args) ->
 ch_sup:start_link().

stop(_State) ->
 ok.
A library application that cannot be started or stopped does not need any
application callback module.

 Application Resource File

To define an application, an application specification is created, which is
put in an application resource file, or in short an .app file:
{application, Application, [Opt1,...,OptN]}.
	Application, an atom, is the name of the application. The file must be named
Application.app.
	Each Opt is a tuple {Key,Value}, which defines a certain property of the
application. All keys are optional. Default values are used for any omitted
keys.

The contents of a minimal .app file for a library application libapp looks
as follows:
{application, libapp, []}.
The contents of a minimal .app file ch_app.app for a supervision tree
application like ch_app looks as follows:
{application, ch_app,
 [{mod, {ch_app,[]}}]}.
The key mod defines the callback module and start argument of the application,
in this case ch_app and [], respectively. This means that the following is
called when the application is to be started:
ch_app:start(normal, [])
The following is called when the application is stopped:
ch_app:stop([])
When using systools, the Erlang/OTP tools for packaging code (see Section
Releases), the keys description, vsn, modules,
registered, and applications are also to be specified:
{application, ch_app,
 [{description, "Channel allocator"},
 {vsn, "1"},
 {modules, [ch_app, ch_sup, ch3]},
 {registered, [ch3]},
 {applications, [kernel, stdlib, sasl]},
 {mod, {ch_app,[]}}
]}.
	description - A short description, a string. Defaults to "".
	vsn - Version number, a string. Defaults to "".
	modules - All modules introduced by this application. systools uses
this list when generating boot scripts and tar files. A module must only
be included in one application. Defaults to [].
	registered - All names of registered processes in the application.
systools uses this list to detect name clashes between applications.
Defaults to [].
	applications - All applications that must be started before this
application is started. systools uses this list to generate correct boot
scripts. Defaults to []. Notice that all applications have dependencies to
at least Kernel and STDLIB.

Note
For details about the syntax and contents of the application resource file,
see app in Kernel.

 Directory Structure

When packaging code using systools, the code for each application is placed in
a separate directory, lib/Application-Vsn, where Vsn is the version number.
This can be useful to know, even if systools is not used, since Erlang/OTP is
packaged according to the OTP principles and thus comes with a specific
directory structure. The code server (see module code in Kernel)
automatically uses code from the directory with the highest version number, if
more than one version of an application is present.

 Directory Structure Guidelines for a Development Environment

Any directory structure for development will suffice as long as the released
directory structure adheres to the
description below, but it is encouraged that
the same directory structure also be used in a development environment. The
version number should be omitted from the application directory name since this
is an artifact of the release step.
Some sub-directories are required. Some sub-directories are optional,
meaning that it should only be used if the application itself requires it.
Finally, some sub-directories are recommended, meaning it is encouraged that
it is used and used as described here. For example, both documentation and tests
are encouraged to exist in an application for it to be deemed a proper OTP
application.
 ─ ${application}
 ├── doc
 │ ├── internal
 │ ├── examples
 │ └── src
 ├── include
 ├── priv
 ├── src
 │ └── ${application}.app.src
 └── test
	src - Required. Contains the Erlang source code, the source of the .app
file and internal include files used by the application itself. Additional
sub-directories within src can be used as namespaces to organize source
files. These directories should never be deeper than one level.
	priv - Optional. Used for application specific files.
	include - Optional. Used for public include files that must be reachable
from other applications.
	doc - Recommended. Any source documentation should be placed in
sub-directories here.
	doc/internal - Recommended. Any documentation that describes implementation
details about this application, not intended for publication, should be placed
here.
	doc/examples - Recommended. Source code for examples on how to use this
application should be placed here. It is encouraged that examples are sourced
to the public documentation from this directory.
	doc/src - Recommended. All source files for documentation, such as
Markdown, AsciiDoc, or XML-files, should be placed here.
	test - Recommended. All files regarding tests, such as test suites and test
specifications, should be placed here.

Other directories in the development environment may be needed. If source code
from languages other than Erlang is used, for instance C-code for NIFs, that
code should be placed in a separate directory. By convention it is recommended
to prefix such directories with the language name, for example c_src for C,
java_src for Java or go_src for Go. Directories with _src suffix indicates
that it is a part of the application and the compilation step. The final build
artifacts should target the priv/lib or priv/bin directories.
The priv directory holds assets that the application needs during runtime.
Executables should reside in priv/bin and dynamically-linked libraries should
reside in priv/lib. Other assets are free to reside within the priv
directory but it is recommended they do so in a structured manner.
Source files from other languages that generate Erlang code, such as ASN.1 or
Mibs, should be placed in directories, at the top level or in src, with the
same name as the source language, for example asn1 and mibs. Build artifacts
should be placed in their respective language directory, such as src for
Erlang code or java_src for Java code.
In a development environment, it is acceptable that the .app file for
the release resides in the ebin directory, but it is recommended that
it is an artifact of the build step. By convention a .app.src
located in the src directory is used. This file is nearly identical
to the .app file, but certain fields, such as the application
version, are replaced during the build step.
Directory names should not be capitalized.
It is encouraged to omit empty directories.

 Directory Structure for a Released System

A released application must follow a certain structure.
 ─ ${application}-${version}
 ├── bin
 ├── doc
 │ ├── html
 │ ├── man[1-9]
 │ ├── pdf
 │ ├── internal
 │ └── examples
 ├── ebin
 │ └── ${application}.app
 ├── include
 ├── priv
 │ ├── lib
 │ └── bin
 └── src
	src - Optional. Contains the Erlang source code and internal include files
used by the application itself.
	ebin - Required. Contains the Erlang object code, the .beam files. The
.app file must also be placed here.
	priv - Optional. Used for application specific files. code:priv_dir/1 is
to be used to access this directory.
	priv/lib - Recommended. Any shared-object files that are used by the
application, such as NIFs or linked-in-drivers, should be placed here.
	priv/bin - Recommended. Any executable that is used by the application,
such as port programs, should be placed here.
	include - Optional. Used for public include files that must be reachable
from other applications.
	bin - Optional. Any executable that is a product of the application, such
as escripts or shell scripts, should be placed here.
	doc - Optional. Any released documentation should be placed in
sub-directories here.

The src directory could be useful to release for debugging purposes,
but this is not required. The include directory should only be
released if the applications has public include files.
It is encouraged to omit empty directories.

 Application Controller

When an Erlang runtime system is started, a number of processes are started as
part of the Kernel application. One of these processes is the application
controller process, registered as application_controller.
All operations on applications are coordinated by the application
controller. Use module application in Kernel to load, unload, start, and
stop applications.

 Loading and Unloading Applications

Before an application can be started, it must be loaded. The application
controller reads and stores the information from the .app file:
1> application:load(ch_app).
ok
2> application:loaded_applications().
[{kernel,"ERTS CXC 138 10","2.8.1.3"},
 {stdlib,"ERTS CXC 138 10","1.11.4.3"},
 {ch_app,"Channel allocator","1"}]
An application that has been stopped, or has never been started, can be
unloaded. The information about the application is erased from the internal
database of the application controller.
3> application:unload(ch_app).
ok
4> application:loaded_applications().
[{kernel,"ERTS CXC 138 10","2.8.1.3"},
 {stdlib,"ERTS CXC 138 10","1.11.4.3"}]
Note
Loading/unloading an application does not load/unload the code used by the
application. Code loading is handled in the usual way by the code server.

 Starting and Stopping Applications

An application is started by calling:
5> application:start(ch_app).
ok
6> application:which_applications().
[{kernel,"ERTS CXC 138 10","2.8.1.3"},
 {stdlib,"ERTS CXC 138 10","1.11.4.3"},
 {ch_app,"Channel allocator","1"}]
If the application is not already loaded, the application controller first loads
it using application:load/1. It checks the value of the applications key to
ensure that all applications that are to be started before this application are
running.

Following that, the application controller creates an application master for
the application.
The application master establishes itself as the group
leader of all processes in the application
and will forward I/O to the previous group leader.
Note
The purpose of the application master being the group leader is to easily
keep track of which processes that belong to the application. That is needed
to support the application:get_application/0 and application:get_env/1
functions, and also when stopping an application to ensure that all processes
belonging to the application are terminated.
The application master starts the application by calling the application
callback function start/2 in the module with the start argument defined
by the mod key in the .app file.
An application is stopped, but not unloaded, by calling:
7> application:stop(ch_app).
ok
The application master stops the application by telling the top supervisor to
shut down. The top supervisor tells all its child processes to shut down, and so
on; the entire tree is terminated in reversed start order. The application
master then calls the application callback function stop/1 in the module
defined by the mod key.

 Configuring an Application

An application can be configured using configuration parameters. These are a
list of {Par,Val} tuples specified by a key env in the .app file:
{application, ch_app,
 [{description, "Channel allocator"},
 {vsn, "1"},
 {modules, [ch_app, ch_sup, ch3]},
 {registered, [ch3]},
 {applications, [kernel, stdlib, sasl]},
 {mod, {ch_app,[]}},
 {env, [{file, "/usr/local/log"}]}
]}.
Par is to be an atom. Val is any term. The application can retrieve the
value of a configuration parameter by calling application:get_env(App, Par) or
a number of similar functions. For more information, see module application
in Kernel.
Example:
% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ^G)
1> application:start(ch_app).
ok
2> application:get_env(ch_app, file).
{ok,"/usr/local/log"}
The values in the .app file can be overridden by values in a system
configuration file. This is a file that contains configuration parameters for
relevant applications:
[{Application1, [{Par11,Val11},...]},
 ...,
 {ApplicationN, [{ParN1,ValN1},...]}].
The system configuration is to be called Name.config and Erlang is to be
started with the command-line argument -config Name. For details, see
config in Kernel.
Example:
A file test.config is created with the following contents:
[{ch_app, [{file, "testlog"}]}].
The value of file overrides the value of file as defined in the .app file:
% erl -config test
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ^G)
1> application:start(ch_app).
ok
2> application:get_env(ch_app, file).
{ok,"testlog"}
If release handling is used, exactly one system
configuration file is to be used and that file is to be called sys.config.
The values in the .app file and the values in a system configuration file can
be overridden directly from the command line:
% erl -ApplName Par1 Val1 ... ParN ValN
Example:
% erl -ch_app file '"testlog"'
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ^G)
1> application:start(ch_app).
ok
2> application:get_env(ch_app, file).
{ok,"testlog"}

 Application Start Types

A start type is defined when starting the application:
application:start(Application, Type)
application:start(Application) is the same as calling
application:start(Application, temporary). The type can also be permanent or
transient:
	If a permanent application terminates, all other applications and the runtime
system are also terminated.
	If a transient application terminates with reason normal, this is reported
but no other applications are terminated. If a transient application
terminates abnormally, that is with any other reason than normal, all other
applications and the runtime system are also terminated.
	If a temporary application terminates, this is reported but no other
applications are terminated.

An application can always be stopped explicitly by calling application:stop/1.
Regardless of the mode, no other applications are affected.
The transient mode is of little practical use, since when a supervision tree
terminates, the reason is set to shutdown, not normal.

Included Applications

 Introduction

An application can include other applications. An included application has
its own application directory and .app file, but it is started as part of the
supervisor tree of another application.
An application can only be included by one other application.
An included application can include other applications.
An application that is not included by any other application is called a
primary application.

title: Primary Application and Included Applications

flowchart TD
 prim_app((Primary Application))

 subgraph Included Applications
 app1((App))
 app2((App))
 app3((App))
 app4((App))
 app5((App))

 subgraph Included Applications
 app11((App))
 end
 subgraph Included Applications
 app31((App))
 app32((App))
 end
 end

 prim_app --- app1 --- app11
 prim_app --- app2
 prim_app --- app3
 prim_app --- app4
 prim_app --- app5

 app3 --- app31
 app3 --- app32
The application controller automatically loads any included applications when
loading a primary application, but does not start them. Instead, the top
supervisor of the included application must be started by a supervisor in the
including application.
This means that when running, an included application is in fact part of the
primary application, and a process in an included application considers itself
belonging to the primary application.

 Specifying Included Applications

Which applications to include is defined by the included_applications key in
the .app file:
{application, prim_app,
 [{description, "Tree application"},
 {vsn, "1"},
 {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
 {registered, [prim_app_server]},
 {included_applications, [incl_app]},
 {applications, [kernel, stdlib, sasl]},
 {mod, {prim_app_cb,[]}},
 {env, [{file, "/usr/local/log"}]}
]}.

 Synchronizing Processes during Startup

The supervisor tree of an included application is started as part of the
supervisor tree of the including application. If there is a need for
synchronization between processes in the including and included applications,
this can be achieved by using start phases.
Start phases are defined by the start_phases key in the .app file as a list
of tuples {Phase,PhaseArgs}, where Phase is an atom and PhaseArgs is a
term.
The value of the mod key of the including application must be set to
{application_starter,[Module,StartArgs]}, where Module as usual is the
application callback module. StartArgs is a term provided as argument to the
callback function Module:start/2:
{application, prim_app,
 [{description, "Tree application"},
 {vsn, "1"},
 {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
 {registered, [prim_app_server]},
 {included_applications, [incl_app]},
 {start_phases, [{init,[]}, {go,[]}]},
 {applications, [kernel, stdlib, sasl]},
 {mod, {application_starter,[prim_app_cb,[]]}},
 {env, [{file, "/usr/local/log"}]}
]}.

{application, incl_app,
 [{description, "Included application"},
 {vsn, "1"},
 {modules, [incl_app_cb, incl_app_sup, incl_app_server]},
 {registered, []},
 {start_phases, [{go,[]}]},
 {applications, [kernel, stdlib, sasl]},
 {mod, {incl_app_cb,[]}}
]}.
When starting a primary application with included applications, the primary
application is started the normal way, that is:
	The application controller creates an application master for the application
	The application master calls Module:start(normal, StartArgs) to start the
top supervisor.

Then, for the primary application and each included application in top-down,
left-to-right order, the application master calls
Module:start_phase(Phase, Type, PhaseArgs) for each phase defined for the
primary application, in that order. If a phase is not defined for an included
application, the function is not called for this phase and application.
The following requirements apply to the .app file for an included application:
	The {mod, {Module,StartArgs}} option must be included. This option is used
to find the callback module Module of the application. StartArgs is
ignored, as Module:start/2 is called only for the primary application.
	If the included application itself contains included applications, instead the
{mod, {application_starter, [Module,StartArgs]}} option must be included.
	The {start_phases, [{Phase,PhaseArgs}]} option must be included, and the set
of specified phases must be a subset of the set of phases specified for the
primary application.

When starting prim_app as defined above, the application controller calls the
following callback functions before application:start(prim_app) returns a
value:
application:start(prim_app)
 => prim_app_cb:start(normal, [])
 => prim_app_cb:start_phase(init, normal, [])
 => prim_app_cb:start_phase(go, normal, [])
 => incl_app_cb:start_phase(go, normal, [])
ok

Distributed Applications

 Introduction

In a distributed system with several Erlang nodes, it can be necessary to
control applications in a distributed manner. If the node, where a certain
application is running, goes down, the application is to be restarted at another
node.
Such an application is called a distributed application. Note that it is the
control of the application that is distributed. All applications can be
distributed in the sense that they, for example, use services on other nodes.
Since a distributed application can move between nodes, some addressing
mechanism is required to ensure that it can be addressed by other applications,
regardless on which node it currently executes. This issue is not addressed
here, but the global or pg modules in Kernel can be used for this purpose.

 Specifying Distributed Applications

Distributed applications are controlled by both the application
controller and a distributed application controller process called
dist_ac. Both processes are part of the Kernel application.
Distributed applications are thus specified by
configuring the Kernel application, using the following configuration
parameter (see also Kernel):
distributed = [{Application, [Timeout,] NodeDesc}]
	Specifies where the application Application = atom() can execute.
	NodeDesc = [Node | {Node,...,Node}] is a list of node names in priority
order. The order between nodes in a tuple is undefined.

	Timeout = integer() specifies how many milliseconds to wait before
restarting the application at another node. It defaults to 0.

For distribution of application control to work properly, the nodes where a
distributed application can run must contact each other and negotiate where to
start the application. This is done using the following configuration parameters
in Kernel:
	sync_nodes_mandatory = [Node] - Specifies which other nodes must be started
(within the time-out specified by sync_nodes_timeout).
	sync_nodes_optional = [Node] - Specifies which other nodes can be started
(within the time-out specified by sync_nodes_timeout).
	sync_nodes_timeout = integer() | infinity - Specifies how many milliseconds
to wait for the other nodes to start.

When started, the node waits for all nodes specified by sync_nodes_mandatory
and sync_nodes_optional to come up. When all nodes are up, or when all
mandatory nodes are up and the time specified by sync_nodes_timeout has
elapsed, all applications start. If not all mandatory nodes are up, the node
terminates.
Example:
An application myapp is to run at the node cp1@cave. If this node goes down,
myapp is to be restarted at cp2@cave or cp3@cave. A system configuration
file cp1.config for cp1@cave can look as follows:
[{kernel,
 [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
 {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
 {sync_nodes_timeout, 5000}
]
 }
].
The system configuration files for cp2@cave and cp3@cave are identical,
except for the list of mandatory nodes, which is to be [cp1@cave, cp3@cave]
for cp2@cave and [cp1@cave, cp2@cave] for cp3@cave.
Note
All involved nodes must have the same value for distributed and
sync_nodes_timeout. Otherwise the system behavior is undefined.

 Starting and Stopping Distributed Applications

When all involved (mandatory) nodes have been started, the distributed
application can be started by calling application:start(Application) at all
of these nodes.
A boot script (see Releases) can be used that
automatically starts the application.
The application is started at the first operational node that is listed in the
list of nodes in the distributed configuration parameter. The application is
started as usual. That is, an application master is created and calls the
application callback function:
Module:start(normal, StartArgs)
Example:
Continuing the example from the previous section, the three nodes are started,
specifying the system configuration file:
> erl -sname cp1 -config cp1
> erl -sname cp2 -config cp2
> erl -sname cp3 -config cp3
When all nodes are operational, myapp can be started. This is achieved by
calling application:start(myapp) at all three nodes. It is then started at
cp1, as shown in the following figure:

[image: Application myapp - Situation 1]
Similarly, the application must be stopped by calling
application:stop(Application) at all involved nodes.

 Failover

If the node where the application is running goes down, the application is
restarted (after the specified time-out) at the first operational node that is
listed in the list of nodes in the distributed configuration parameter. This
is called a failover.
The application is started the normal way at the new node, that is, by the
application master calling:
Module:start(normal, StartArgs)
An exception is if the application has the start_phases key defined (see
Included Applications). The application is then
instead started by calling:
Module:start({failover, Node}, StartArgs)
Here Node is the terminated node.
Example:
If cp1 goes down, the system checks which one of the other nodes, cp2 or
cp3, has the least number of running applications, but waits for 5 seconds for
cp1 to restart. If cp1 does not restart and cp2 runs fewer applications
than cp3, myapp is restarted on cp2.

[image: Application myapp - Situation 2]
Suppose now that cp2 goes also down and does not restart within 5 seconds.
myapp is now restarted on cp3.

[image: Application myapp - Situation 3]

 Takeover

If a node is started, which has higher priority according to distributed than
the node where a distributed application is running, the application is
restarted at the new node and stopped at the old node. This is called a
takeover.
The application is started by the application master calling:
Module:start({takeover, Node}, StartArgs)
Here Node is the old node.
Example:
If myapp is running at cp3, and if cp2 now restarts, it does not restart
myapp, as the order between the cp2 and cp3 nodes is undefined.

[image: Application myapp - Situation 4]
However, if cp1 also restarts, the function application:takeover/2 moves
myapp to cp1, as cp1 has a higher priority than cp3 for this
application. In this case, Module:start({takeover, cp3@cave}, StartArgs) is
executed at cp1 to start the application.

[image: Application myapp - Situation 5]

Releases

It is recommended to read this section alongside
rel, systools, and
script in SASL.

 Release Concept

When you have written one or more applications, you might want to create a
complete system with these applications and a subset of the Erlang/OTP
applications. This is called a release.
To do this, create a release resource file that
defines which applications are included in the release.
The release resource file is used to generate
boot scripts and
release packages. A system that is transferred to
and installed at another site is called a target system. How to use a release
package to create a target system is described in
Creating and Upgrading a Target System
in System Principles.

 Release Resource File

To define a release, create a release resource file, or in short a .rel
file. In the file, specify the name and version of the release, which ERTS
version it is based on, and which applications it consists of:
{release, {Name,Vsn}, {erts, EVsn},
 [{Application1, AppVsn1},
 ...
 {ApplicationN, AppVsnN}]}.
Name, Vsn, EVsn, and AppVsn are strings.
The file must be named Rel.rel, where Rel is a unique name.
Each Application (atom) and AppVsn is the name and version of an application
included in the release. The minimal release based on Erlang/OTP consists of the
Kernel and STDLIB applications, so these applications must be included in the
list.
If the release is to be upgraded, it must also include the SASL application.

Here is an example showing the .app file for a release of ch_app from
the Applications section:
{application, ch_app,
 [{description, "Channel allocator"},
 {vsn, "1"},
 {modules, [ch_app, ch_sup, ch3]},
 {registered, [ch3]},
 {applications, [kernel, stdlib, sasl]},
 {mod, {ch_app,[]}}
]}.
The .rel file must also contain kernel, stdlib, and sasl, as these
applications are required by ch_app. The file is called ch_rel-1.rel:
{release,
 {"ch_rel", "A"},
 {erts, "14.2.5"},
 [{kernel, "9.2.4"},
 {stdlib, "5.2.3"},
 {sasl, "4.2.1"},
 {ch_app, "1"}]
}.

 Generating Boot Scripts

systools in the SASL application includes tools to build and check
releases. The functions read the .rel and .app files and perform
syntax and dependency checks. The
systools:make_script/1,2 function is
used to generate a boot script:
1> systools:make_script("ch_rel-1", [local]).
ok
This call creates both the human-readable boot script,
ch_rel-1.script, and the binary boot script, ch_rel-1.boot, used
by the runtime system.
	"ch_rel-1" is the name of the .rel file, minus the extension.
	local is an option that means that the directories where the applications
are found are used in the boot script, instead of $ROOT/lib ($ROOT is the
root directory of the installed release).

This is a useful way to test a generated boot script locally.
When starting Erlang/OTP using the boot script, all applications from the .rel
file are automatically loaded and started:
% erl -boot ch_rel-1
Erlang/OTP 26 [erts-14.2.5] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]

Eshell V14.2.5 (press Ctrl+G to abort, type help(). for help)
1> application:which_applications().
[{ch_app,"Channel allocator","1"},
 {sasl,"SASL CXC 138 11","4.2.1"},
 {stdlib,"ERTS CXC 138 10","5.2.3"},
 {kernel,"ERTS CXC 138 10","9.2.4"}]

 Creating a Release Package

The systools:make_tar/1,2 function takes a
.rel file as input and creates a zipped tar file with the code for
the specified applications, a release package:
1> systools:make_script("ch_rel-1").
ok
2> systools:make_tar("ch_rel-1").
ok
The release package by default contains:
	The .app files
	The .rel file
	The object code for all applications, structured according to the
application directory structure
	The binary boot script renamed to start.boot

% tar tf ch_rel-1.tar
lib/kernel-9.2.4/ebin/kernel.app
lib/kernel-9.2.4/ebin/application.beam
...
lib/stdlib-5.2.3/ebin/stdlib.app
lib/stdlib-5.2.3/ebin/argparse.beam
...
lib/sasl-4.2.1/ebin/sasl.app
lib/sasl-4.2.1/ebin/sasl.beam
...
lib/ch_app-1/ebin/ch_app.app
lib/ch_app-1/ebin/ch_app.beam
lib/ch_app-1/ebin/ch_sup.beam
lib/ch_app-1/ebin/ch3.beam
releases/ch_rel-1.rel
releases/A/ch_rel-1.rel
releases/A/start.boot
A new boot script was generated, without the local option set, before the
release package was made. In the release package, all application directories
are placed under lib. You do not know where the release package will be
installed, so no hard-coded absolute paths are allowed.
The release resource file mysystem.rel is duplicated in the tar file.
Originally, this file was only stored in the releases directory to make it
possible for the release_handler to extract this file separately. After
unpacking the tar file, release_handler would automatically copy the file to
releases/FIRST. However, sometimes the tar file is unpacked without involving
the release_handler (for example, when unpacking the first target system) and
the file is therefore now instead duplicated in the tar file so no manual
copying is necessary.
If a relup file and/or a system configuration file called sys.config, or a
sys.config.src, is found, these files are also included in the release
package. See Release Handling.
Options can be set to make the release package include source code and the ERTS
binary as well.
For information on how to install the first target system, using a release
package, see System Principles. For information on how to install a new release
package in an existing system, see Release Handling.

 Directory Structure

The directory structure for the code installed by the release handler from a
release package is as follows:
$ROOT/lib/App1-AVsn1/ebin
 /priv
 /App2-AVsn2/ebin
 /priv
 ...
 /AppN-AVsnN/ebin
 /priv
 /erts-EVsn/bin
 /releases/Vsn
 /bin
	lib - Application directories
	erts-EVsn/bin - Erlang runtime system executables
	releases/Vsn - .rel file and boot script start.boot; if present in the
release package, relup and/or sys.config or sys.config.src
	bin - Top-level Erlang runtime system executables

Applications are not required to be located under directory $ROOT/lib. Several
installation directories, which contain different parts of a system, can thus
exist. For example, the previous example can be extended as follows:
$SECOND_ROOT/.../SApp1-SAVsn1/ebin
 /priv
 /SApp2-SAVsn2/ebin
 /priv
 ...
 /SAppN-SAVsnN/ebin
 /priv

$THIRD_ROOT/TApp1-TAVsn1/ebin
 /priv
 /TApp2-TAVsn2/ebin
 /priv
 ...
 /TAppN-TAVsnN/ebin
 /priv
$SECOND_ROOT and $THIRD_ROOT are introduced as variables in the call to
the systools:make_script/2 function.

 Disk-Less and/or Read-Only Clients

If a complete system consists of disk-less and/or read-only client nodes, a
clients directory is to be added to the $ROOT directory. A read-only node is
a node with a read-only file system.
The clients directory is to have one subdirectory per supported client node.
The name of each client directory is to be the name of the corresponding client
node. As a minimum, each client directory is to contain the bin and releases
subdirectories. These directories are used to store information about installed
releases and to appoint the current release to the client. The $ROOT directory
thus contains the following:
$ROOT/...
 /clients/ClientName1/bin
 /releases/Vsn
 /ClientName2/bin
 /releases/Vsn
 ...
 /ClientNameN/bin
 /releases/Vsn
This structure is to be used if all clients are running the same type of Erlang
machine. If there are clients running different types of Erlang machines, or on
different operating systems, the clients directory can be divided into one
subdirectory per type of Erlang machine. Alternatively, one $ROOT can be set
up per type of machine. For each type, some of the directories specified for the
$ROOT directory are to be included:
$ROOT/...
 /clients/Type1/lib
 /erts-EVsn
 /bin
 /ClientName1/bin
 /releases/Vsn
 /ClientName2/bin
 /releases/Vsn
 ...
 /ClientNameN/bin
 /releases/Vsn
 ...
 /TypeN/lib
 /erts-EVsn
 /bin
 ...
With this structure, the root directory for clients of Type1 is
$ROOT/clients/Type1.

Release Handling

 Release Handling Principles

An important feature of the Erlang programming language is the ability to change
module code at runtime, code replacement, as described in
Code Replacement in the Erlang Reference
Manual.
Based on this feature, the OTP application SASL provides a framework for
upgrading and downgrading between different versions of an entire release in
runtime. This is called release handling.
The framework consists of:
	Offline support - systools for generating scripts and building release
packages
	Online support - release_handler for unpacking and installing release
packages

The minimal system based on Erlang/OTP, enabling release handling, thus consists
of the Kernel, STDLIB, and SASL applications.

 Release Handling Workflow

Step 1) A release is created as described in Releases.
Step 2) The release is transferred to and installed at target environment. For
information of how to install the first target system, see
System Principles.
Step 3) Modifications, for example, error corrections, are made to the code in
the development environment.
Step 4) At some point, it is time to make a new version of release. The
relevant .app files are updated and a new .rel file is written.
Step 5) For each modified application, an
application upgrade file, .appup, is created. In
this file, it is described how to upgrade and/or downgrade between the old and
new version of the application.
Step 6) Based on the .appup files, a
release upgrade file called relup, is created.
This file describes how to upgrade and/or downgrade between the old and new
version of the entire release.
Step 7) A new release package is made and transferred to the target system.
Step 8) The new release package is unpacked using the release handler.
Step 9) The new version of the release is installed, also using the release
handler. This is done by evaluating the instructions in relup. Modules can be
added, deleted, or reloaded, applications can be started, stopped, or restarted,
and so on. In some cases, it is even necessary to restart the runtime system.
	If the installation fails, the system can be rebooted. The old release version
is then automatically used.
	If the installation succeeds, the new version is made the default version,
which is to now be used if there is a system reboot.

 Release Handling Aspects

Appup Cookbook, contains examples of .appup files for
typical cases of upgrades/downgrades that are normally easy to handle in
runtime. However, many aspects can make release handling complicated, for
example:
	Complicated or circular dependencies can make it difficult or even impossible
to decide in which order things must be done without risking runtime errors
during an upgrade or downgrade. Dependencies can be:
	Between nodes
	Between processes
	Between modules

	During release handling, non-affected processes continue normal execution.
This can lead to time-outs or other problems. For example, new processes
created in the time window between suspending processes using a certain
module, and loading a new version of this module, can execute old code.

It is thus recommended that code is changed in as small steps as possible, and
always kept backwards compatible.

 Requirements

For release handling to work properly, the runtime system must have knowledge
about which release it is running. It must also be able to change (in runtime)
which boot script and system configuration file to use if the system is
rebooted, for example, by heart after a failure. Thus, Erlang must be started
as an embedded system; for information on how to do this, see Embedded System.
For system reboots to work properly, it is also required that the system is
started with heartbeat monitoring; see erl
in ERTS and module heart in Kernel.
Other requirements:
	The boot script included in a release package must be generated from the same
.rel file as the release package itself.
Information about applications is fetched from the script when an upgrade or
downgrade is performed.

	The system must be configured using only one system configuration file, called
sys.config.
If found, this file is automatically included when a release package is
created.

	All versions of a release, except the first one, must contain a relup file.
If found, this file is automatically included when a release package is
created.

 Distributed Systems

If the system consists of several Erlang nodes, each node can use its own
version of the release. The release handler is a locally registered process and
must be called at each node where an upgrade or downgrade is required. A release
handling instruction, sync_nodes, can be used to synchronize the release
handler processes at a number of nodes; see appup in SASL.

 Release Handling Instructions

OTP supports a set of release handling instructions that are used when
creating .appup files. The release handler understands a subset of these, the
low-level instructions. To make it easier for the user, there are also a
number of high-level instructions, which are translated to low-level
instructions by systools:make_relup.
Some of the most frequently used instructions are described in this section. The
complete list of instructions is included in appup in SASL.
First, some definitions:
	Residence module - The module where a process has its tail-recursive loop
function(s). If these functions are implemented in several modules, all those
modules are residence modules for the process.
	Functional module - A module that is not a residence module for any
process.

For a process implemented using an OTP behaviour, the behaviour module is the
residence module for that process. The callback module is a functional module.

 load_module

If a simple extension has been made to a functional module, it is sufficient to
load the new version of the module into the system, and remove the old version.
This is called simple code replacement and for this the following instruction
is used:
{load_module, Module}

 update

If a more complex change has been made, for example, a change to the format of
the internal state of a gen_server, simple code replacement is not sufficient.
Instead, it is necessary to:
	Suspend the processes using the module (to avoid that they try to handle any
requests before the code replacement is completed).
	Ask them to transform the internal state format and switch to the new version
of the module.
	Remove the old version.
	Resume the processes.

This is called synchronized code replacement and for this the following
instructions are used:
{update, Module, {advanced, Extra}}
{update, Module, supervisor}
update with argument {advanced,Extra} is used when changing the internal
state of a behaviour as described above. It causes behaviour processes to call
the callback function code_change/3, passing the term Extra and some other
information as arguments. See the manual pages for the respective behaviours and
Appup Cookbook.
update with argument supervisor is used when changing the start
specification of a supervisor. See Appup Cookbook.
When a module is to be updated, the release handler finds which processes that
are using the module by traversing the supervision tree of each running
application and checking all the child specifications:
{Id, StartFunc, Restart, Shutdown, Type, Modules}
A process uses a module if the name is listed in Modules in the child
specification for the process.
If Modules=dynamic, which is the case for event managers, the event manager
process informs the release handler about the list of currently installed event
handlers (gen_event), and it is checked if the module name is in this list
instead.
The release handler suspends, asks for code change, and resumes processes by
calling the functions sys:suspend/1,2, sys:change_code/4,5, and
sys:resume/1,2, respectively.

 add_module and delete_module

If a new module is introduced, the following instruction is used:
{add_module, Module}
This instruction loads module Module. When running Erlang in
embedded mode it is necessary to use this this instruction. It is not
strictly required when running Erlang in interactive mode, since the
code server automatically searches for and loads unloaded modules.
The opposite of add_module is delete_module, which unloads a module:
{delete_module, Module}
Any process, in any application, with Module as residence module, is
killed when the instruction is evaluated. Therefore, the user must
ensure that all such processes are terminated before deleting module
Module to avoid a situation with failing supervisor restarts.

 Application Instructions

The following is the instruction for adding an application:
{add_application, Application}
Adding an application means that the modules defined by the modules key in the
.app file are loaded using a number of add_module instructions, and then the
application is started.
The following is the instruction for removing an application:
{remove_application, Application}
Removing an application means that the application is stopped, the modules are
unloaded using a number of delete_module instructions, and then the
application specification is unloaded from the application controller.
The following is the instruction for restarting an application:
{restart_application, Application}
Restarting an application means that the application is stopped and then started
again similar to using the instructions remove_application and
add_application in sequence.

 apply (Low-Level)

To call an arbitrary function from the release handler, the following
instruction is used:
{apply, {M, F, A}}
The release handler evaluates apply(M, F, A).

 restart_new_emulator (Low-Level)

This instruction is used when changing to a new version of the runtime
system, or when any of the core applications Kernel, STDLIB, or SASL
is upgraded. If a system reboot is needed for another reason, the
restart_emulator instruction is to be used instead.
This instruction requires that the system is started with heartbeat monitoring;
see erl in ERTS and module heart in Kernel.
The restart_new_emulator instruction must always be the first instruction in a
relup. If the relup is generated by
systools:make_relup/3,4,
this condition is automatically met.
When the release handler encounters this instruction, it first generates a
temporary boot file that starts the new versions of the runtime system and the
core applications, and the old version of all other applications. Then it shuts
down the current instance of the runtime system by calling init:reboot/0.
All processes are terminated gracefully and the system is rebooted by
the heart program, using the temporary boot file. After the reboot, the rest
of the relup instructions are executed. This is done as a part of the temporary
boot script.
Warning
This mechanism causes the new versions of the runtime system and core
applications to run with the old version of other applications during startup.
Thus, take extra care to avoid incompatibility. Incompatible changes in the
core applications can in some situations be necessary. If possible, such changes
are preceded by deprecation over two major releases before the actual change.
To ensure the application is not crashed by an incompatible change, always
remove any call to deprecated functions as soon as possible.
An info report is written when the upgrade is completed. To programmatically
find out if the upgrade is complete, call
release_handler:which_releases(current)
and check whether it returns the expected (that is, the new) release.
The new release version must be made permanent when the new runtime system is
operational. Otherwise, the old version will be used if there is a new system
reboot.
On UNIX, the release handler tells the heart program which command to use to
reboot the system. The environment variable HEART_COMMAND, normally used by
the heart program, is ignored in this case. The command instead defaults to
$ROOT/bin/start. Another command can be set by using the SASL configuration
parameter start_prg. For more information, see SASL.

 restart_emulator (Low-Level)

This instruction is not related to upgrades of ERTS or any of the core
applications. It can be used by any application to force a restart of the
runtime system after all upgrade instructions are executed.
A relup script can only contain one restart_emulator instruction, and it must
always be placed at the end. If the relup is generated by
systools:make_relup/3,4,
this condition is automatically met.
When the release handler encounters this instruction, it shuts down
the runtime system by calling init:reboot/0. All processes are terminated
gracefully and the system can then be rebooted by the heart program
using the new release version. No more upgrade instruction is executed
after the restart.

 Application Upgrade File

To define how to upgrade/downgrade between the current version and previous
versions of an application, an application upgrade file, or in short
.appup file is created. The file is to be called Application.appup, where
Application is the application name:
{Vsn,
 [{UpFromVsn1, InstructionsU1},
 ...,
 {UpFromVsnK, InstructionsUK}],
 [{DownToVsn1, InstructionsD1},
 ...,
 {DownToVsnK, InstructionsDK}]}.
	Vsn, a string, is the current version of the application, as defined in the
.app file.
	Each UpFromVsn is a previous version of the application to upgrade from.
	Each DownToVsn is a previous version of the application to downgrade to.
	Each Instructions is a list of release handling instructions.

UpFromVsn and DownToVsn can also be specified as regular expressions. For
more information about the syntax and contents of the .appup file, see
appup in SASL.
Appup Cookbook includes examples of .appup files for
typical upgrade/downgrade cases.
Example: Consider the release ch_rel-1 from
Releases. Assume you want to add a function
available/0 to server ch3, which returns the number of available channels
(when trying out the example, make the change in a copy of the original
directory, to ensure that the first version is still available):
-module(ch3).
-behaviour(gen_server).

-export([start_link/0]).
-export([alloc/0, free/1]).
-export([available/0]).
-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
 gen_server:start_link({local, ch3}, ch3, [], []).

alloc() ->
 gen_server:call(ch3, alloc).

free(Ch) ->
 gen_server:cast(ch3, {free, Ch}).

available() ->
 gen_server:call(ch3, available).

init(_Args) ->
 {ok, channels()}.

handle_call(alloc, _From, Chs) ->
 {Ch, Chs2} = alloc(Chs),
 {reply, Ch, Chs2};
handle_call(available, _From, Chs) ->
 N = available(Chs),
 {reply, N, Chs}.

handle_cast({free, Ch}, Chs) ->
 Chs2 = free(Ch, Chs),
 {noreply, Chs2}.
A new version of the ch_app.app file must now be created, where the version is
updated:
{application, ch_app,
 [{description, "Channel allocator"},
 {vsn, "2"},
 {modules, [ch_app, ch_sup, ch3]},
 {registered, [ch3]},
 {applications, [kernel, stdlib, sasl]},
 {mod, {ch_app,[]}}
]}.
To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"),
you only need to load the new (old) version of the ch3 callback module. Create
the application upgrade file ch_app.appup in the ebin directory:
{"2",
 [{"1", [{load_module, ch3}]}],
 [{"1", [{load_module, ch3}]}]
}.

 Release Upgrade File

To define how to upgrade/downgrade between the new version and previous versions
of a release, a release upgrade file, or in short .relup file, is to be
created.
This file does not need to be created manually. It can be generated by
systools:make_relup/3,4.
The relevant versions of the .rel file, .app
files, and .appup files are used as input. It is deduced which applications
are to be added and deleted, and which applications that must be upgraded and/or
downgraded. The instructions for this are fetched from the .appup files and
transformed into a single list of low-level instructions in the right order.
If the relup file is relatively simple, it can be created manually. It is only
to contain low-level instructions.
For details about the syntax and contents of the release upgrade file, see
relup in SASL.
Example, continued from the previous section: You have a new version "2" of
ch_app and an .appup file. A new version of the .rel file is also needed.
This time the file is called ch_rel-2.rel and the release version string is
changed from "A" to "B":
{release,
 {"ch_rel", "B"},
 {erts, "14.2.5"},
 [{kernel, "9.2.4"},
 {stdlib, "5.2.3"},
 {sasl, "4.2.1"},
 {ch_app, "2"}]
}.
Now the relup file can be generated:
1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
ok
This generates a relup file with instructions for how to upgrade from version
"A" ("ch_rel-1") to version "B" ("ch_rel-2") and how to downgrade from version
"B" to version "A".
Both the old and new versions of the .app and .rel files must be in the code
path, as well as the .appup and (new) .beam files. The code path can be
extended by using the option path:
1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"],
[{path,["../ch_rel-1",
"../ch_rel-1/lib/ch_app-1/ebin"]}]).
ok

 Installing a Release

When you have made a new version of a release, a release package can be created
with this new version and transferred to the target environment.
To install the new version of the release in runtime, the release
handler is used. This is a process belonging to the SASL application,
which handles unpacking, installation, and removal of release
packages. The release_handler module communicates with this process.
Assuming there is an operational target system with installation root directory
$ROOT, the release package with the new version of the release is to be copied
to $ROOT/releases.
First, unpack the release package. The files are then extracted from the
package:
release_handler:unpack_release(ReleaseName) => {ok, Vsn}
	ReleaseName is the name of the release package except the .tar.gz
extension.
	Vsn is the version of the unpacked release, as defined in its .rel file.

A directory $ROOT/lib/releases/Vsn is created, where the .rel file, the boot
script start.boot, the system configuration file sys.config, and relup are
placed. For applications with new version numbers, the application directories
are placed under $ROOT/lib. Unchanged applications are not affected.
An unpacked release can be installed. The release handler then evaluates the
instructions in relup, step by step:
release_handler:install_release(Vsn) => {ok, FromVsn, []}
If an error occurs during the installation, the system is rebooted using the old
version of the release. If installation succeeds, the system is afterwards using
the new version of the release, but if anything happens and the system is
rebooted, it starts using the previous version again.
To be made the default version, the newly installed release must be made
permanent, which means the previous version becomes old:
release_handler:make_permanent(Vsn) => ok
The system keeps information about which versions are old and permanent in the
files $ROOT/releases/RELEASES and $ROOT/releases/start_erl.data.
To downgrade from Vsn to FromVsn, install_release must be called again:
release_handler:install_release(FromVsn) => {ok, Vsn, []}
An installed, but not permanent, release can be removed. Information about the
release is then deleted from $ROOT/releases/RELEASES and the release-specific
code, that is, the new application directories and the $ROOT/releases/Vsn
directory, are removed.
release_handler:remove_release(Vsn) => ok

 Example (continued from the previous sections)

Step 1) Create a target system as described in System Principles of the first
version "A" of ch_rel from Releases. This
time sys.config must be included in the release package. If no configuration
is needed, the file is to contain the empty list:
[].
Step 2) Start the system as a simple target system. In reality, it is to be
started as an embedded system. However, using erl with the correct boot script
and config file is enough for illustration purposes:
% cd $ROOT
% bin/erl -boot $ROOT/releases/A/start -config $ROOT/releases/A/sys
...
$ROOT is the installation directory of the target system.
Step 3) In another Erlang shell, generate start scripts and create a release
package for the new version "B". Remember to include (a possible updated)
sys.config and the relup file. For more information, see
Release Upgrade File.
1> systools:make_script("ch_rel-2").
ok
2> systools:make_tar("ch_rel-2").
ok
The new release package now also contains version "2" of ch_app and the
relup file:
% tar tf ch_rel-2.tar
lib/kernel-9.2.4/ebin/kernel.app
lib/kernel-9.2.4/ebin/application.beam
...
lib/stdlib-5.2.3/ebin/stdlib.app
lib/stdlib-5.2.3/ebin/argparse.beam
...
lib/sasl-4.2.1/ebin/sasl.app
lib/sasl-4.2.1/ebin/sasl.beam
...
lib/ch_app-2/ebin/ch_app.app
lib/ch_app-2/ebin/ch_app.beam
lib/ch_app-2/ebin/ch_sup.beam
lib/ch_app-2/ebin/ch3.beam
releases/B/start.boot
releases/B/relup
releases/B/sys.config
releases/B/ch_rel-2.rel
releases/ch_rel-2.rel
Step 4) Copy the release package ch_rel-2.tar.gz to the $ROOT/releases
directory.
Step 5) In the running target system, unpack the release package:
1> release_handler:unpack_release("ch_rel-2").
{ok,"B"}
The new application version ch_app-2 is installed under $ROOT/lib next to
ch_app-1. The kernel, stdlib, and sasl directories are not affected, as
they have not changed.
Under $ROOT/releases, a new directory B is created, containing
ch_rel-2.rel, start.boot, sys.config, and relup.
Step 6) Check if the function ch3:available/0 is available:
2> ch3:available().
** exception error: undefined function ch3:available/0
Step 7) Install the new release. The instructions in $ROOT/releases/B/relup
are executed one by one, resulting in the new version of ch3 being loaded. The
function ch3:available/0 is now available:
3> release_handler:install_release("B").
{ok,"A",[]}
4> ch3:available().
3
5> code:which(ch3).
".../lib/ch_app-2/ebin/ch3.beam"
6> code:which(ch_sup).
".../lib/ch_app-1/ebin/ch_sup.beam"
Processes in ch_app for which code have not been updated, for example, the
supervisor, are still evaluating code from ch_app-1.
Step 8) If the target system is now rebooted, it uses version "A" again. The
"B" version must be made permanent, to be used when the system is rebooted.
7> release_handler:make_permanent("B").
ok

 Updating Application Specifications

When a new version of a release is installed, the application specifications are
automatically updated for all loaded applications.
Note
The information about the new application specifications is fetched from the
boot script included in the release package. Thus, it is important that the
boot script is generated from the same .rel file as is used to build the
release package itself.
Specifically, the application configuration parameters are automatically updated
according to (in increasing priority order):
	The data in the boot script, fetched from the new application resource file
App.app
	The new sys.config
	Command-line arguments -App Par Val

This means that parameter values set in the other system configuration files and
values set using application:set_env/3 are disregarded.
When an installed release is made permanent, the system process init is set to
point out the new sys.config.
After the installation, the application controller compares the old and new
configuration parameters for all running applications and call the callback
function:
Module:config_change(Changed, New, Removed)
	Module is the application callback module as defined by the mod key in the
.app file.
	Changed and New are lists of {Par,Val} for all changed and added
configuration parameters, respectively.
	Removed is a list of all parameters Par that have been removed.

The function is optional and can be omitted when implementing an application
callback module.

Appup Cookbook

This section includes examples of .appup files for typical cases of
upgrades/downgrades done in runtime.

 Changing a Functional Module

When a functional module has been changed, for example, if a new function has
been added or a bug has been corrected, simple code replacement is sufficient,
for example:
{"2",
 [{"1", [{load_module, m}]}],
 [{"1", [{load_module, m}]}]
}.

 Changing a Residence Module

In a system implemented according to the OTP design principles, all processes,
except system processes and special processes, reside in one of the behaviours
supervisor, gen_server, gen_statem, gen_event, or gen_fsm.
These belong to the STDLIB application and upgrading/downgrading normally
requires a runtime system restart.
Thus, OTP provides no support for changing residence modules except in the case
of special processes.

 Changing a Callback Module

A callback module is a functional module, and for code extensions simple code
replacement is sufficient.
Example
When adding a function to ch3, as described in the example in
Release Handling, ch_app.appup looks as follows:
{"2",
 [{"1", [{load_module, ch3}]}],
 [{"1", [{load_module, ch3}]}]
}.
OTP also supports changing the internal state of behaviour processes; see
Changing Internal State.

 Changing Internal State

In this case, simple code replacement is not sufficient. The process must
explicitly transform its state using the callback function code_change/3 before
switching to the new version of the callback module. Thus, synchronized code
replacement is used.
Example
Consider the ch3 module from
gen_server Behaviour. The internal state is a term
Chs representing the available channels. Assume you want to add a counter N,
which keeps track of the number of alloc requests so far. This means that the
format must be changed to {Chs,N}.
The .appup file can look as follows:
{"2",
 [{"1", [{update, ch3, {advanced, []}}]}],
 [{"1", [{update, ch3, {advanced, []}}]}]
}.
The third element of the update instruction is a tuple {advanced,Extra},
which says that the affected processes are to do a state transformation before
loading the new version of the module. This is done by the processes calling the
callback function code_change/3 (see gen_server in STDLIB).
The term Extra, in this case [], is passed as is to the function:

-module(ch3).
...
-export([code_change/3]).
...
code_change({down, _Vsn}, {Chs, N}, _Extra) ->
 {ok, Chs};
code_change(_Vsn, Chs, _Extra) ->
 {ok, {Chs, 0}}.
The first argument is {down,Vsn} if there is a downgrade, or Vsn if there is
a upgrade. The term Vsn is fetched from the 'original' version of the module,
that is, the version you are upgrading from, or downgrading to.
The version is defined by the module attribute vsn, if any. There is no such
attribute in ch3, so in this case the version is the checksum (a huge integer)
of the beam file, an uninteresting value, which is ignored.
The other callback functions of ch3 must also be modified and perhaps a new
interface function must be added, but this is not shown here.

 Module Dependencies

Assume that a module is extended by adding an interface function, as in the
example in Release Handling, where a function
available/0 is added to ch3.
If a call is added to this function, say in module m1, a runtime error could
can occur during release upgrade if the new version of m1 is loaded first and
calls ch3:available/0 before the new version of ch3 is loaded.
Thus, ch3 must be loaded before m1, in the upgrade case, and conversely in
the downgrade case. m1 is said to be dependent on ch3. In a release
handling instruction, this is expressed by the DepMods element:
{load_module, Module, DepMods}
{update, Module, {advanced, Extra}, DepMods}
DepMods is a list of modules, on which Module is dependent.
Example
The module m1 in application myapp is dependent on ch3 when
upgrading from "1" to "2", or downgrading from "2" to "1":
myapp.appup:

{"2",
 [{"1", [{load_module, m1, [ch3]}]}],
 [{"1", [{load_module, m1, [ch3]}]}]
}.

ch_app.appup:

{"2",
 [{"1", [{load_module, ch3}]}],
 [{"1", [{load_module, ch3}]}]
}.
If instead m1 and ch3 belong to the same application, the .appup file can
look as follows:
{"2",
 [{"1",
 [{load_module, ch3},
 {load_module, m1, [ch3]}]}],
 [{"1",
 [{load_module, ch3},
 {load_module, m1, [ch3]}]}]
}.
m1 is dependent on ch3 also when downgrading. systools knows the
difference between up- and downgrading and generates a correct relup, where
ch3 is loaded before m1 when upgrading, but m1 is loaded before ch3 when
downgrading.

 Changing Code for a Special Process

In this case, simple code replacement is not sufficient. When a new version of a
residence module for a special process is loaded, the process must make a fully
qualified call to its loop function to switch to the new code. Thus,
synchronized code replacement must be used.
Note
The name(s) of the user-defined residence module(s) must be listed in the
Modules part of the child specification for the special process. Otherwise
the release handler cannot find the process.
Example
Consider the example ch4 in sys and proc_lib.
When started by a supervisor, the child specification can look as follows:
{ch4, {ch4, start_link, []},
 permanent, brutal_kill, worker, [ch4]}
If ch4 is part of the application sp_app and a new version of the module is
to be loaded when upgrading from version "1" to "2" of this application,
sp_app.appup can look as follows:
{"2",
 [{"1", [{update, ch4, {advanced, []}}]}],
 [{"1", [{update, ch4, {advanced, []}}]}]
}.
The update instruction must contain the tuple {advanced,Extra}. The
instruction makes the special process call the callback function
system_code_change/4, a function the user must implement. The term Extra, in
this case [], is passed as is to system_code_change/4:
-module(ch4).
...
-export([system_code_change/4]).
...

system_code_change(Chs, _Module, _OldVsn, _Extra) ->
 {ok, Chs}.
	The first argument is the internal state State, passed from
function sys:handle_system_msg(Request, From, Parent, Module, Deb, State), and called by the special
process when a system message is received. In ch4, the internal
state is the set of available channels Chs.
	The second argument is the name of the module (ch4).
	The third argument is Vsn or {down,Vsn}, as described for
gen_server:code_change/3 in
Changing Internal State.

In this case, all arguments but the first are ignored and the function simply
returns the internal state again. This is enough if the code only has been
extended. If instead the internal state is changed (similar to the example in
Changing Internal State), this is done in this
function and {ok,Chs2} returned.

 Changing a Supervisor

The supervisor behaviour supports changing the internal state, that is, changing
the restart strategy and maximum restart frequency properties, as well as
changing the existing child specifications.
Child processes can be added or deleted, but this is not handled automatically.
Instructions must be given by in the .appup file.

 Changing Properties

Since the supervisor is to change its internal state, synchronized code
replacement is required. However, a special update instruction must be used.
First, the new version of the callback module must be loaded, both in the case
of upgrade and downgrade. Then the new return value of init/1 can be checked
and the internal state be changed accordingly.
The following upgrade instruction is used for supervisors:
{update, Module, supervisor}
Example
To change the restart strategy of ch_sup (from
Supervisor Behaviour) from one_for_one to one_for_all,
change the callback function init/1 in ch_sup.erl:
-module(ch_sup).
...

init(_Args) ->
 {ok, {#{strategy => one_for_all, ...}, ...}}.
The file ch_app.appup:
{"2",
 [{"1", [{update, ch_sup, supervisor}]}],
 [{"1", [{update, ch_sup, supervisor}]}]
}.

 Changing Child Specifications

The instruction, and thus the .appup file, when changing an existing child
specification, is the same as when changing properties as described earlier:
{"2",
 [{"1", [{update, ch_sup, supervisor}]}],
 [{"1", [{update, ch_sup, supervisor}]}]
}.
The changes do not affect existing child processes. For example, changing the
start function only specifies how the child process is to be restarted, if
needed later on.
The id of the child specification cannot be changed.
Changing the Modules field of the child specification can affect the release
handling process itself, as this field is used to identify which processes are
affected when doing a synchronized code replacement.

 Adding and Deleting Child Processes

As stated earlier, changing child specifications does not affect existing child
processes. New child specifications are automatically added, but not deleted.
Child processes are not automatically started or terminated, this must be done
using apply instructions.
Example
Assume a new child process m1 is to be added to ch_sup when
upgrading ch_app from "1" to "2". This means m1 is to be deleted when
downgrading from "2" to "1":
{"2",
 [{"1",
 [{update, ch_sup, supervisor},
 {apply, {supervisor, restart_child, [ch_sup, m1]}}
]}],
 [{"1",
 [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
 {apply, {supervisor, delete_child, [ch_sup, m1]}},
 {update, ch_sup, supervisor}
]}]
}.
The order of the instructions is important.
The supervisor must be registered as ch_sup for the script to work. If the
supervisor is not registered, it cannot be accessed directly from the script.
Instead a help function that finds the pid of the supervisor and calls
supervisor:restart_child, and so on, must be written. This function is then to
be called from the script using the apply instruction.
If the module m1 is introduced in version "2" of ch_app, it must also be
loaded when upgrading and deleted when downgrading:
{"2",
 [{"1",
 [{add_module, m1},
 {update, ch_sup, supervisor},
 {apply, {supervisor, restart_child, [ch_sup, m1]}}
]}],
 [{"1",
 [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
 {apply, {supervisor, delete_child, [ch_sup, m1]}},
 {update, ch_sup, supervisor},
 {delete_module, m1}
]}]
}.
As stated earlier, the order of the instructions is important. When upgrading,
m1 must be loaded, and the supervisor child specification changed, before the
new child process can be started. When downgrading, the child process must be
terminated before the child specification is changed and the module is deleted.

 Adding or Deleting a Module

_Example
_ A new functional module m is added to ch_app:
{"2",
 [{"1", [{add_module, m}]}],
 [{"1", [{delete_module, m}]}]

 Starting or Terminating a Process

In a system structured according to the OTP design principles, any process would
be a child process belonging to a supervisor, see
Adding and Deleting Child Processes in Changing a
Supervisor.

 Adding or Removing an Application

When adding or removing an application, no .appup file is needed. When
generating relup, the .rel files are compared and the add_application and
remove_application instructions are added automatically.

 Restarting an Application

Restarting an application is useful when a change is too complicated to be made
without restarting the processes, for example, if the supervisor hierarchy has
been restructured.
Example
When adding a child m1 to ch_sup, as in
Adding and Deleting Child Processes in Changing a
Supervisor, an alternative to updating the supervisor is to restart the entire
application:
{"2",
 [{"1", [{restart_application, ch_app}]}],
 [{"1", [{restart_application, ch_app}]}]
}.

 Changing an Application Specification

When installing a release, the application specifications are automatically
updated before evaluating the relup script. Thus, no instructions are needed
in the .appup file:
{"2",
 [{"1", []}],
 [{"1", []}]
}.

 Changing Application Configuration

Changing an application configuration by updating the env key in the .app
file is an instance of changing an application specification, see the previous
section.
Alternatively, application configuration parameters can be added or updated in
sys.config.

 Changing Included Applications

The release handling instructions for adding, removing, and restarting
applications apply to primary applications only. There are no corresponding
instructions for included applications. However, since an included application
is really a supervision tree with a topmost supervisor, started as a child
process to a supervisor in the including application, a .relup file can be
manually created.
Example
Assume there is a release containing an application prim_app, which
have a supervisor prim_sup in its supervision tree.
In a new version of the release, the application ch_app is to be included in
prim_app. That is, its topmost supervisor ch_sup is to be started as a child
process to prim_sup.
The workflow is as follows:
Step 1) Edit the code for prim_sup:
init(...) ->
 {ok, {...supervisor flags...,
 [...,
 {ch_sup, {ch_sup,start_link,[]},
 permanent,infinity,supervisor,[ch_sup]},
 ...]}}.
Step 2) Edit the .app file for prim_app:
{application, prim_app,
 [...,
 {vsn, "2"},
 ...,
 {included_applications, [ch_app]},
 ...
]}.
Step 3) Create a new .rel file, including ch_app:
{release,
 ...,
 [...,
 {prim_app, "2"},
 {ch_app, "1"}]}.
The included application can be started in two ways. This is described in the
next two sections.

 Application Restart

Step 4a) One way to start the included application is to restart the entire
prim_app application. Normally, the restart_application instruction in the
.appup file for prim_app would be used.
However, if this is done and a .relup file is generated, not only would it
contain instructions for restarting (that is, removing and adding) prim_app,
it would also contain instructions for starting ch_app (and stopping it, in
the case of downgrade). This is because ch_app is included in the new .rel
file, but not in the old one.
Instead, a correct relup file can be created manually, either from scratch or
by editing the generated version. The instructions for starting/stopping
ch_app are replaced by instructions for loading/unloading the application:
{"B",
 [{"A",
 [],
 [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
 {load_object_code,{prim_app,"2",[prim_app,prim_sup]}},
 point_of_no_return,
 {apply,{application,stop,[prim_app]}},
 {remove,{prim_app,brutal_purge,brutal_purge}},
 {remove,{prim_sup,brutal_purge,brutal_purge}},
 {purge,[prim_app,prim_sup]},
 {load,{prim_app,brutal_purge,brutal_purge}},
 {load,{prim_sup,brutal_purge,brutal_purge}},
 {load,{ch_sup,brutal_purge,brutal_purge}},
 {load,{ch3,brutal_purge,brutal_purge}},
 {apply,{application,load,[ch_app]}},
 {apply,{application,start,[prim_app,permanent]}}]}],
 [{"A",
 [],
 [{load_object_code,{prim_app,"1",[prim_app,prim_sup]}},
 point_of_no_return,
 {apply,{application,stop,[prim_app]}},
 {apply,{application,unload,[ch_app]}},
 {remove,{ch_sup,brutal_purge,brutal_purge}},
 {remove,{ch3,brutal_purge,brutal_purge}},
 {purge,[ch_sup,ch3]},
 {remove,{prim_app,brutal_purge,brutal_purge}},
 {remove,{prim_sup,brutal_purge,brutal_purge}},
 {purge,[prim_app,prim_sup]},
 {load,{prim_app,brutal_purge,brutal_purge}},
 {load,{prim_sup,brutal_purge,brutal_purge}},
 {apply,{application,start,[prim_app,permanent]}}]}]
}.

 Supervisor Change

Step 4b) Another way to start the included application (or stop it in the case
of downgrade) is by combining instructions for adding and removing child
processes to/from prim_sup with instructions for loading/unloading all
ch_app code and its application specification.
Again, the .relup file is created manually, either from scratch or by editing a
generated version. Load all code for ch_app first, and also load the
application specification, before prim_sup is updated. When downgrading,
prim_sup is to updated first, before the code for ch_app and its application
specification are unloaded.
{"B",
 [{"A",
 [],
 [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
 {load_object_code,{prim_app,"2",[prim_sup]}},
 point_of_no_return,
 {load,{ch_sup,brutal_purge,brutal_purge}},
 {load,{ch3,brutal_purge,brutal_purge}},
 {apply,{application,load,[ch_app]}},
 {suspend,[prim_sup]},
 {load,{prim_sup,brutal_purge,brutal_purge}},
 {code_change,up,[{prim_sup,[]}]},
 {resume,[prim_sup]},
 {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
 [{"A",
 [],
 [{load_object_code,{prim_app,"1",[prim_sup]}},
 point_of_no_return,
 {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}},
 {apply,{supervisor,delete_child,[prim_sup,ch_sup]}},
 {suspend,[prim_sup]},
 {load,{prim_sup,brutal_purge,brutal_purge}},
 {code_change,down,[{prim_sup,[]}]},
 {resume,[prim_sup]},
 {remove,{ch_sup,brutal_purge,brutal_purge}},
 {remove,{ch3,brutal_purge,brutal_purge}},
 {purge,[ch_sup,ch3]},
 {apply,{application,unload,[ch_app]}}]}]
}.

 Changing Non-Erlang Code

Changing code for a program written in another programming language than Erlang,
for example, a port program, is application-dependent and OTP provides no
special support.
Example
When changing code for a port program, assume that the Erlang process
controlling the port is a gen_server portc and that the port is opened in
the callback function init/1:
init(...) ->
 ...,
 PortPrg = filename:join(code:priv_dir(App), "portc"),
 Port = open_port({spawn,PortPrg}, [...]),
 ...,
 {ok, #state{port=Port, ...}}.
If the port program is to be updated, the code for the gen_server can be
extended with a code_change/3 function, which closes the old port and opens a
new port. (If necessary, the gen_server can first request data that must be
saved from the port program and pass this data to the new port):
code_change(_OldVsn, State, port) ->
 State#state.port ! close,
 receive
 {Port,close} ->
 true
 end,
 PortPrg = filename:join(code:priv_dir(App), "portc"),
 Port = open_port({spawn,PortPrg}, [...]),
 {ok, #state{port=Port, ...}}.
Update the application version number in the .app file and write an .appup
file:
["2",
 [{"1", [{update, portc, {advanced,port}}]}],
 [{"1", [{update, portc, {advanced,port}}]}]
].
Ensure that the priv directory, where the C program is located, is included in
the new release package:
1> systools:make_tar("my_release", [{dirs,[priv]}]).
...

 Runtime System Restart and Upgrade

Two upgrade instructions restart the runtime system:
	restart_new_emulator
Intended when ERTS, Kernel, STDLIB, or SASL is upgraded. It is automatically
added when the relup file is generated by systools:make_relup/3,4. It is
executed before all other upgrade instructions. For more information about
this instruction, see restart_new_emulator (Low-Level) in
Release Handling Instructions.

	restart_emulator
Used when a restart of the runtime system is required after all other upgrade
instructions are executed. For more information about this instruction, see
restart_emulator (Low-Level) in
Release Handling Instructions.

If a runtime system restart is necessary and no upgrade instructions are needed,
that is, if the restart itself is enough for the upgraded applications to start
running the new versions, a simple .relup file can be created manually:
{"B",
 [{"A",
 [],
 [restart_emulator]}],
 [{"A",
 [],
 [restart_emulator]}]
}.
In this case, the release handler framework with automatic packing and unpacking
of release packages, automatic path updates, and so on, can be used without
having to specify .appup files.

Introduction

This section contains examples on using records, funs, list comprehensions, and
the bit syntax.

Records

 Records and Tuples

The main advantage of using records rather than tuples is that fields in a
record are accessed by name, whereas fields in a tuple are accessed by position.
To illustrate these differences, suppose that you want to represent a person
with the tuple {Name, Address, Phone}.
To write functions that manipulate this data, remember the following:
	The Name field is the first element of the tuple.
	The Address field is the second element.
	The Phone field is the third element.

For example, to extract data from a variable P that contains such a tuple, you
can write the following code and then use pattern matching to extract the
relevant fields:
Name = element(1, P),
Address = element(2, P),
...
Such code is difficult to read and understand, and errors occur if the numbering
of the elements in the tuple is wrong. If the data representation of the fields
is changed, by re-ordering, adding, or removing fields, all references to the
person tuple must be checked and possibly modified.
Records allow references to the fields by name, instead of by position. In the
following example, a record instead of a tuple is used to store the data:
-record(person, {name, phone, address}).
This enables references to the fields of the record by name. For example, if P
is a variable whose value is a person record, the following code access the
name and address fields of the records:
Name = P#person.name,
Address = P#person.address,
...
Internally, records are represented using tagged tuples:
{person, Name, Phone, Address}

 Defining a Record

This following definition of a person is used in several examples in this
section. Three fields are included, name, phone, and address. The default
values for name and phone is "" and [], respectively. The default value for
address is the atom undefined, since no default value is supplied for this
field:
-record(person, {name = "", phone = [], address}).
The record must be defined in the shell to enable use of the record syntax in
the examples:
> rd(person, {name = "", phone = [], address}).
person
This is because record definitions are only available at compile time, not at
runtime. For details on records in the shell, see the shell manual page in
STDLIB.

 Creating a Record

A new person record is created as follows:
> #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}
As the address field was omitted, its default value is used.
From Erlang 5.1/OTP R8B, a value to all fields in a record can be set with the
special field _. _ means "all fields not explicitly specified".
Example:
> #person{name = "Jakob", _ = '_'}.
#person{name = "Jakob",phone = '_',address = '_'}
It is primarily intended to be used in ets:match/2 and
mnesia:match_object/3, to set record fields to the atom '_'. (This is a
wildcard in ets:match/2.)

 Accessing a Record Field

The following example shows how to access a record field:
> P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
> P#person.name.
"Joe"

 Updating a Record

The following example shows how to update a record:
> P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
#person{name = "Joe",phone = [1,2,3],address = "A street"}
> P2 = P1#person{name="Robert"}.
#person{name = "Robert",phone = [1,2,3],address = "A street"}

 Type Testing

The following example shows that the guard succeeds if P is record of type
person:
foo(P) when is_record(P, person) -> a_person;
foo(_) -> not_a_person.

 Pattern Matching

Matching can be used in combination with records, as shown in the following
example:
> P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
#person{name = "Joe",phone = [0,0,7],address = "A street"}
> #person{name = Name} = P3, Name.
"Joe"
The following function takes a list of person records and searches for the
phone number of a person with a particular name:
find_phone([#person{name=Name, phone=Phone} | _], Name) ->
 {found, Phone};
find_phone([_| T], Name) ->
 find_phone(T, Name);
find_phone([], Name) ->
 not_found.
The fields referred to in the pattern can be given in any order.

 Nested Records

The value of a field in a record can be an instance of a record. Retrieval of
nested data can be done stepwise, or in a single step, as shown in the following
example:
-record(name, {first = "Robert", last = "Ericsson"}).
-record(person, {name = #name{}, phone}).

demo() ->
 P = #person{name= #name{first="Robert",last="Virding"}, phone=123},
 First = (P#person.name)#name.first.
Here, demo() evaluates to "Robert".

 A Longer Example

Comments are embedded in the following example:
%% File: person.hrl

%%---
%% Data Type: person
%% where:
%% name: A string (default is undefined).
%% age: An integer (default is undefined).
%% phone: A list of integers (default is []).
%% dict: A dictionary containing various information
%% about the person.
%% A {Key, Value} list (default is the empty list).
%%--
-record(person, {name, age, phone = [], dict = []}).
-module(person).
-include("person.hrl").
-compile(export_all). % For test purposes only.

%% This creates an instance of a person.
%% Note: The phone number is not supplied so the
%% default value [] will be used.

make_hacker_without_phone(Name, Age) ->
 #person{name = Name, age = Age,
 dict = [{computer_knowledge, excellent},
 {drinks, coke}]}.

%% This demonstrates matching in arguments

print(#person{name = Name, age = Age,
 phone = Phone, dict = Dict}) ->
 io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
 "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).

%% Demonstrates type testing, selector, updating.

birthday(P) when is_record(P, person) ->
 P#person{age = P#person.age + 1}.

register_two_hackers() ->
 Hacker1 = make_hacker_without_phone("Joe", 29),
 OldHacker = birthday(Hacker1),
 % The central_register_server should have
 % an interface function for this.
 central_register_server ! {register_person, Hacker1},
 central_register_server ! {register_person,
 OldHacker#person{name = "Robert",
 phone = [0,8,3,2,4,5,3,1]}}.

Funs

 map

The following function, double, doubles every element in a list:
double([H|T]) -> [2*H|double(T)];
double([]) -> [].
Hence, the argument entered as input is doubled as follows:
> double([1,2,3,4]).
[2,4,6,8]
The following function, add_one, adds one to every element in a list:
add_one([H|T]) -> [H+1|add_one(T)];
add_one([]) -> [].
The functions double and add_one have a similar structure. This can be used
by writing a function map that expresses this similarity:
map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, []) -> [].
The functions double and add_one can now be expressed in terms of map as
follows:
double(L) -> map(fun(X) -> 2*X end, L).
add_one(L) -> map(fun(X) -> 1 + X end, L).
map(F, List) is a function that takes a function F and a list L as
arguments and returns a new list, obtained by applying F to each of the
elements in L.
The process of abstracting out the common features of a number of different
programs is called procedural abstraction. Procedural abstraction can be used
to write several different functions that have a similar structure, but differ
in some minor detail. This is done as follows:
	Step 1. Write one function that represents the common features of these
functions.
	Step 2. Parameterize the difference in terms of functions that are passed
as arguments to the common function.

 foreach

This section illustrates procedural abstraction. Initially, the following two
examples are written as conventional functions.
This function prints all elements of a list onto a stream:
print_list(Stream, [H|T]) ->
 io:format(Stream, "~p~n", [H]),
 print_list(Stream, T);
print_list(Stream, []) ->
 true.
This function broadcasts a message to a list of processes:
broadcast(Msg, [Pid|Pids]) ->
 Pid ! Msg,
 broadcast(Msg, Pids);
broadcast(_, []) ->
 true.
These two functions have a similar structure. They both iterate over a list and
do something to each element in the list. The "something" is passed on as an
extra argument to the function that does this.
The function foreach expresses this similarity:
foreach(F, [H|T]) ->
 F(H),
 foreach(F, T);
foreach(F, []) ->
 ok.
Using the function foreach, the function print_list becomes:
foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)
Using the function foreach, the function broadcast becomes:
foreach(fun(Pid) -> Pid ! M end, L)
foreach is evaluated for its side-effect and not its value. foreach(Fun ,L)
calls Fun(X) for each element X in L and the processing occurs in the
order that the elements were defined in L. map does not define the order in
which its elements are processed.

 Syntax of Funs

Funs are written with the following syntax (see
Fun Expressions for full description):
F = fun (Arg1, Arg2, ... ArgN) ->
 ...
 end
This creates an anonymous function of N arguments and binds it to the variable
F.
Another function, FunctionName, written in the same module, can be passed as
an argument, using the following syntax:
F = fun FunctionName/Arity
With this form of function reference, the function that is referred to does not
need to be exported from the module.
It is also possible to refer to a function defined in a different module, with
the following syntax:
F = fun Module:FunctionName/Arity
In this case, the function must be exported from the module in question.
The following program illustrates the different ways of creating funs:
-module(fun_test).
-export([t1/0, t2/0]).
-import(lists, [map/2]).

t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).

t2() -> map(fun double/1, [1,2,3,4,5]).

double(X) -> X * 2.
The fun F can be evaluated with the following syntax:
F(Arg1, Arg2, ..., Argn)
To check whether a term is a fun, use the test
is_function/1 in a guard.
Example:
f(F, Args) when is_function(F) ->
 apply(F, Args);
f(N, _) when is_integer(N) ->
 N.
Funs are a distinct type. The BIFs erlang:fun_info/1,2 can be used to retrieve
information about a fun, and the BIF erlang:fun_to_list/1 returns a textual
representation of a fun. The check_process_code/2
BIF returns true if the process contains funs that depend on the old version
of a module.

 Variable Bindings Within a Fun

The scope rules for variables that occur in funs are as follows:
	All variables that occur in the head of a fun are assumed to be "fresh"
variables.
	Variables that are defined before the fun, and that occur in function calls or
guard tests within the fun, have the values they had outside the fun.
	Variables cannot be exported from a fun.

The following examples illustrate these rules:
print_list(File, List) ->
 {ok, Stream} = file:open(File, write),
 foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
 file:close(Stream).
Here, the variable X, defined in the head of the fun, is a new variable. The
variable Stream, which is used within the fun, gets its value from the
file:open line.
As any variable that occurs in the head of a fun is considered a new variable,
it is equally valid to write as follows:
print_list(File, List) ->
 {ok, Stream} = file:open(File, write),
 foreach(fun(File) ->
 io:format(Stream,"~p~n",[File])
 end, List),
 file:close(Stream).
Here, File is used as the new variable instead of X. This is not so wise
because code in the fun body cannot refer to the variable File, which is
defined outside of the fun. Compiling this example gives the following
diagnostic:
./FileName.erl:Line: Warning: variable 'File'
 shadowed in 'fun'
This indicates that the variable File, which is defined inside the fun,
collides with the variable File, which is defined outside the fun.
The rules for importing variables into a fun has the consequence that certain
pattern matching operations must be moved into guard expressions and cannot be
written in the head of the fun. For example, you might write the following code
if you intend the first clause of F to be evaluated when the value of its
argument is Y:
f(...) ->
 Y = ...
 map(fun(X) when X == Y ->
 ;
 (_) ->
 ...
 end, ...)
 ...
instead of writing the following code:
f(...) ->
 Y = ...
 map(fun(Y) ->
 ;
 (_) ->
 ...
 end, ...)
 ...

 Funs and Module Lists

The following examples show a dialogue with the Erlang shell. All the higher
order functions discussed are exported from the module lists.

 map

lists:map/2 takes a function of one argument and a list of terms:
map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, []) -> [].
It returns the list obtained by applying the function to every argument in the
list.
When a new fun is defined in the shell, the value of the fun is printed as
Fun#<erl_eval>:
> Double = fun(X) -> 2 * X end.
#Fun<erl_eval.6.72228031>
> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

 any

lists:any/2 takes a predicate P of one argument and a list of terms:
any(Pred, [H|T]) ->
 case Pred(H) of
 true -> true;
 false -> any(Pred, T)
 end;
any(Pred, []) ->
 false.
A predicate is a function that returns true or false. any is true if
there is a term X in the list such that P(X) is true.
A predicate Big(X) is defined, which is true if its argument is greater that
10:
> Big = fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl_eval.6.72228031>
> lists:any(Big, [1,2,3,4]).
false
> lists:any(Big, [1,2,3,12,5]).
true

 all

lists:all/2 has the same arguments as any:
all(Pred, [H|T]) ->
 case Pred(H) of
 true -> all(Pred, T);
 false -> false
 end;
all(Pred, []) ->
 true.
It is true if the predicate applied to all elements in the list is true.
> lists:all(Big, [1,2,3,4,12,6]).
false
> lists:all(Big, [12,13,14,15]).
true

 foreach

lists:foreach/2 takes a function of one argument and a list of terms:
foreach(F, [H|T]) ->
 F(H),
 foreach(F, T);
foreach(F, []) ->
 ok.
The function is applied to each argument in the list. foreach returns ok. It
is only used for its side-effect:
> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
1
2
3
4
ok

 foldl

lists:foldl/3 takes a function of two arguments, an accumulator and a list:
foldl(F, Accu, [Hd|Tail]) ->
 foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) -> Accu.
The function is called with two arguments. The first argument is the successive
elements in the list. The second argument is the accumulator. The function must
return a new accumulator, which is used the next time the function is called.
If you have a list of lists L = ["I","like","Erlang"], then you can sum the
lengths of all the strings in L as follows:
> L = ["I","like","Erlang"].
["I","like","Erlang"]
10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
11
lists:foldl/3 works like a while loop in an imperative language:
L = ["I","like","Erlang"],
Sum = 0,
while(L != []){
 Sum += length(head(L)),
 L = tail(L)
end

 mapfoldl

lists:mapfoldl/3 simultaneously maps and folds over a list:
mapfoldl(F, Accu0, [Hd|Tail]) ->
 {R,Accu1} = F(Hd, Accu0),
 {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
 {[R|Rs], Accu2};
mapfoldl(F, Accu, []) -> {[], Accu}.
The following example shows how to change all letters in L to upper case and
then count them.
First the change to upper case:
> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $a;
(X) -> X
end.
#Fun<erl_eval.6.72228031>
> Upcase_word =
fun(X) ->
lists:map(Upcase, X)
end.
#Fun<erl_eval.6.72228031>
> Upcase_word("Erlang").
"ERLANG"
> lists:map(Upcase_word, L).
["I","LIKE","ERLANG"]
Now, the fold and the map can be done at the same time:
> lists:mapfoldl(fun(Word, Sum) ->
{Upcase_word(Word), Sum + length(Word)}
end, 0, L).
{["I","LIKE","ERLANG"],11}

 filter

lists:filter/2 takes a predicate of one argument and a list and returns all elements
in the list that satisfy the predicate:
filter(F, [H|T]) ->
 case F(H) of
 true -> [H|filter(F, T)];
 false -> filter(F, T)
 end;
filter(F, []) -> [].
> lists:filter(Big, [500,12,2,45,6,7]).
[500,12,45]
Combining maps and filters enables writing of very succinct code. For example,
to define a set difference function diff(L1, L2) to be the difference between
the lists L1 and L2, the code can be written as follows:
diff(L1, L2) ->
 filter(fun(X) -> not member(X, L2) end, L1).
This gives the list of all elements in L1 that are not contained in L2.
The AND intersection of the list L1 and L2 is also easily defined:
intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

 takewhile

lists:takewhile/2 takes elements X from a list L as long as the predicate
P(X) is true:
takewhile(Pred, [H|T]) ->
 case Pred(H) of
 true -> [H|takewhile(Pred, T)];
 false -> []
 end;
takewhile(Pred, []) ->
 [].
> lists:takewhile(Big, [200,500,45,5,3,45,6]).
[200,500,45]

 dropwhile

lists:dropwhile/2 is the complement of takewhile:
dropwhile(Pred, [H|T]) ->
 case Pred(H) of
 true -> dropwhile(Pred, T);
 false -> [H|T]
 end;
dropwhile(Pred, []) ->
 [].
> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5,3,45,6]

 splitwith

lists:splitwith/2 splits the list L into the two sublists {L1, L2}, where
L = takewhile(P, L) and L2 = dropwhile(P, L):
splitwith(Pred, L) ->
 splitwith(Pred, L, []).

splitwith(Pred, [H|T], L) ->
 case Pred(H) of
 true -> splitwith(Pred, T, [H|L]);
 false -> {reverse(L), [H|T]}
 end;
splitwith(Pred, [], L) ->
 {reverse(L), []}.
> lists:splitwith(Big, [200,500,45,5,3,45,6]).
{[200,500,45],[5,3,45,6]}

 Funs Returning Funs

So far, only functions that take funs as arguments have been described. More
powerful functions, that themselves return funs, can also be written. The
following examples illustrate these type of functions.

 Simple Higher Order Functions

Adder(X) is a function that given X, returns a new function G such that
G(K) returns K + X:
> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<erl_eval.6.72228031>
> Add6 = Adder(6).
#Fun<erl_eval.6.72228031>
> Add6(10).
16

 Infinite Lists

The idea is to write something like:
-module(lazy).
-export([ints_from/1]).
ints_from(N) ->
 fun() ->
 [N|ints_from(N+1)]
 end.
Then proceed as follows:
> XX = lazy:ints_from(1).
#Fun<lazy.0.29874839>
> XX().
[1|#Fun<lazy.0.29874839>]
> hd(XX()).
1
> Y = tl(XX()).
#Fun<lazy.0.29874839>
> hd(Y()).
2
And so on. This is an example of "lazy embedding".

 Parsing

The following examples show parsers of the following type:
Parser(Toks) -> {ok, Tree, Toks1} | fail
Toks is the list of tokens to be parsed. A successful parse returns
{ok, Tree, Toks1}.
	Tree is a parse tree.
	Toks1 is a tail of Tree that contains symbols encountered after the
structure that was correctly parsed.

An unsuccessful parse returns fail.
The following example illustrates a simple, functional parser that parses the
grammar:
(a | b) & (c | d)
The following code defines a function pconst(X) in the module funparse,
which returns a fun that parses a list of tokens:
pconst(X) ->
 fun (T) ->
 case T of
 [X|T1] -> {ok, {const, X}, T1};
 _ -> fail
 end
 end.
This function can be used as follows:
> P1 = funparse:pconst(a).
#Fun<funparse.0.22674075>
> P1([a,b,c]).
{ok,{const,a},[b,c]}
> P1([x,y,z]).
fail
Next, the two higher order functions pand and por are defined. They combine
primitive parsers to produce more complex parsers.
First pand:
pand(P1, P2) ->
 fun (T) ->
 case P1(T) of
 {ok, R1, T1} ->
 case P2(T1) of
 {ok, R2, T2} ->
 {ok, {'and', R1, R2}};
 fail ->
 fail
 end;
 fail ->
 fail
 end
 end.
Given a parser P1 for grammar G1, and a parser P2 for grammar G2,
pand(P1, P2) returns a parser for the grammar, which consists of sequences of
tokens that satisfy G1, followed by sequences of tokens that satisfy G2.
por(P1, P2) returns a parser for the language described by the grammar G1 or
G2:
por(P1, P2) ->
 fun (T) ->
 case P1(T) of
 {ok, R, T1} ->
 {ok, {'or',1,R}, T1};
 fail ->
 case P2(T) of
 {ok, R1, T1} ->
 {ok, {'or',2,R1}, T1};
 fail ->
 fail
 end
 end
 end.
The original problem was to parse the grammar (a | b) & (c | d). The following
code addresses this problem:
grammar() ->
 pand(
 por(pconst(a), pconst(b)),
 por(pconst(c), pconst(d))).
The following code adds a parser interface to the grammar:
parse(List) ->
 (grammar())(List).
The parser can be tested as follows:
> funparse:parse([a,c]).
{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
> funparse:parse([a,d]).
{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
> funparse:parse([b,c]).
{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
> funparse:parse([b,d]).
{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
> funparse:parse([a,b]).
fail

List Comprehensions

 Simple Examples

This section starts with a simple example, showing a generator and a filter:
> [X || X <- [1,2,a,3,4,b,5,6], X > 3].
[a,4,b,5,6]
This is read as follows: The list of X such that X is taken from the list
[1,2,a,...] and X is greater than 3.
The notation X <- [1,2,a,...] is a generator and the expression X > 3 is a
filter.
An additional filter, is_integer(X), can be added to
restrict the result to integers:
> [X || X <- [1,2,a,3,4,b,5,6], is_integer(X), X > 3].
[4,5,6]
Generators can be combined. For example, the Cartesian product of two lists can
be written as follows:
> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

 Quick Sort

The well-known quick sort routine can be written as follows:
sort([]) -> [];
sort([_] = L) -> L;
sort([Pivot|T]) ->
 sort([X || X <- T, X < Pivot]) ++
 [Pivot] ++
 sort([X || X <- T, X >= Pivot]).
The expression [X || X <- T, X < Pivot] is the list of all elements in T
that are less than Pivot.
[X || X <- T, X >= Pivot] is the list of all elements in T that are greater
than or equal to Pivot.
With the algorithm above, a list is sorted as follows:
	A list with zero or one element is trivially sorted.
	For lists with more than one element:	The first element in the list is isolated as the pivot element.
	The remaining list is partitioned into two sublists, such that:

	The first sublist contains all elements that are smaller than the pivot
element.
	The second sublist contains all elements that are greater than or equal to
the pivot element.

	The sublists are recursively sorted by the same algorithm and the results
are combined, resulting in a list consisting of:

	All elements from the first sublist, that is all elements smaller than the
pivot element, in sorted order.
	The pivot element.
	All elements from the second sublist, that is all elements greater than or
equal to the pivot element, in sorted order.

Note
While the sorting algorithm as shown above serves as a nice example to
illustrate list comprehensions with filters, for real world use cases the
lists module contains sorting functions that are implemented in a more
efficient way.

 Permutations

The following example generates all permutations of the elements in a list:
perms([]) -> [[]];
perms(L) -> [[H|T] || H <- L, T <- perms(L--[H])].
This takes H from L in all possible ways. The result is the set of all lists
[H|T], where T is the set of all possible permutations of L, with H
removed:
> perms([b,u,g]).
[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

 Pythagorean Triplets

Pythagorean triplets are sets of integers {A,B,C} such that
A**2 + B**2 = C**2.
The function pyth(N) generates a list of all integers {A,B,C} such that
A**2 + B**2 = C**2 and where the sum of the sides is equal to, or less than,
N:
pyth(N) ->
 [{A,B,C} ||
 A <- lists:seq(1,N),
 B <- lists:seq(1,N),
 C <- lists:seq(1,N),
 A+B+C =< N,
 A*A+B*B == C*C
].
> pyth(3).
[].
> pyth(11).
[].
> pyth(12).
[{3,4,5},{4,3,5}]
> pyth(50).
[{3,4,5},
 {4,3,5},
 {5,12,13},
 {6,8,10},
 {8,6,10},
 {8,15,17},
 {9,12,15},
 {12,5,13},
 {12,9,15},
 {12,16,20},
 {15,8,17},
 {16,12,20}]
The following code reduces the search space and is more efficient:
pyth1(N) ->
 [{A,B,C} ||
 A <- lists:seq(1,N-2),
 B <- lists:seq(A+1,N-1),
 C <- lists:seq(B+1,N),
 A+B+C =< N,
 A*A+B*B == C*C].

 Simplifications With List Comprehensions

As an example, list comprehensions can be used to simplify some of the functions
in lists.erl:
append(L) -> [X || L1 <- L, X <- L1].
map(Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) -> [X || X <- L, Pred(X)].

 Variable Bindings in List Comprehensions

The scope rules for variables that occur in list comprehensions are as follows:
	All variables that occur in a generator pattern are assumed to be "fresh"
variables.
	Any variables that are defined before the list comprehension, and that are
used in filters, have the values they had before the list comprehension.
	Variables cannot be exported from a list comprehension.

As an example of these rules, suppose you want to write the function select,
which selects certain elements from a list of tuples. Suppose you write
select(X, L) -> [Y || {X, Y} <- L]. with the intention of extracting all
tuples from L, where the first item is X.
Compiling this gives the following diagnostic:
./FileName.erl:Line: Warning: variable 'X' shadowed in generate
This diagnostic warns that the variable X in the pattern is not the same as
the variable X that occurs in the function head.
Evaluating select gives the following result:
> select(b,[{a,1},{b,2},{c,3},{b,7}]).
[1,2,3,7]
This is not the wanted result. To achieve the desired effect, select must be
written as follows:
select(X, L) -> [Y || {X1, Y} <- L, X == X1].
The generator now contains unbound variables and the test has been moved into
the filter.
This now works as expected:
> select(b,[{a,1},{b,2},{c,3},{b,7}]).
[2,7]
Also note that a variable in a generator pattern will shadow a variable with the
same name bound in a previous generator pattern. For example:
> [{X,Y} || X <- [1,2,3], X=Y <- [a,b,c]].
[{a,a},{b,b},{c,c},{a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]
A consequence of the rules for importing variables into a list comprehensions is
that certain pattern matching operations must be moved into the filters and
cannot be written directly in the generators.
To illustrate this, do not write as follows:
f(...) ->
 Y = ...
 [Expression || PatternInvolving Y <- Expr, ...]
 ...
Instead, write as follows:
f(...) ->
 Y = ...
 [Expression || PatternInvolving Y1 <- Expr, Y == Y1, ...]
 ...

Bit Syntax

 Introduction

The complete specification for the bit syntax appears in the
Reference Manual.
In Erlang, a Bin is used for constructing binaries and matching binary patterns.
A Bin is written with the following syntax:
<<E1, E2, ... En>>
A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to
enable construction of binaries:
Bin = <<E1, E2, ... En>>
All elements must be bound. Or match a binary:
<<E1, E2, ... En>> = Bin
Here, Bin is bound and the elements are bound or unbound, as in any match.
A Bin does not need to consist of a whole number of bytes.
A bitstring is a sequence of zero or more bits, where the number of bits does
not need to be divisible by 8. If the number of bits is divisible by 8, the
bitstring is also a binary.
Each element specifies a certain segment of the bitstring. A segment is a set
of contiguous bits of the binary (not necessarily on a byte boundary). The first
element specifies the initial segment, the second element specifies the
following segment, and so on.
The following examples illustrate how binaries are constructed, or matched, and
how elements and tails are specified.

 Examples

Example 1: A binary can be constructed from a set of constants or a string
literal:
Bin11 = <<1, 17, 42>>,
Bin12 = <<"abc">>
This gives two binaries of size 3, with the following evaluations:
	binary_to_list(Bin11) evaluates to [1, 17, 42].
	binary_to_list(Bin12) evaluates to [97, 98, 99].

Example 2:Similarly, a binary can be constructed from a set of bound
variables:
A = 1, B = 17, C = 42,
Bin2 = <<A, B, C:16>>
This gives a binary of size 4. Here, a size expression is used for the
variable C to specify a 16-bits segment of Bin2.
binary_to_list(Bin2) evaluates to [1, 17, 00, 42].
Example 3: A Bin can also be used for matching. D, E, and F are unbound
variables, and Bin2 is bound, as in Example 2:
<<D:16, E, F/binary>> = Bin2
This gives D = 273, E = 00, and F binds to a binary of size 1:
binary_to_list(F) = [42].
Example 4: The following is a more elaborate example of matching. Here,
Dgram is bound to the consecutive bytes of an IP datagram of IP protocol
version 4. The ambition is to extract the header and the data of the datagram:
-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

DgramSize = byte_size(Dgram),
case Dgram of
 <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
 ID:16, Flgs:3, FragOff:13,
 TTL:8, Proto:8, HdrChkSum:16,
 SrcIP:32,
 DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
 OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
 <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
 ...
end.
Here, the segment corresponding to the Opts variable has a type modifier,
specifying that Opts is to bind to a binary. All other variables have the
default type equal to unsigned integer.
An IP datagram header is of variable length. This length is measured in the
number of 32-bit words and is given in the segment corresponding to HLen. The
minimum value of HLen is 5. It is the segment corresponding to Opts that is
variable, so if HLen is equal to 5, Opts becomes an empty binary.
The tail variables RestDgram and Data bind to binaries, as all tail
variables do. Both can bind to empty binaries.
The match of Dgram fails if one of the following occurs:
	The first 4-bits segment of Dgram is not equal to 4.
	HLen is less than 5.
	The size of Dgram is less than 4*HLen.

 Lexical Note

Notice that "B=<<1>>" will be interpreted as "B =< <1>>", which is a syntax
error. The correct way to write the expression is: B = <<1>>.

 Segments

Each segment has the following general syntax:
Value:Size/TypeSpecifierList
The Size or the TypeSpecifier, or both, can be omitted. Thus, the following
variants are allowed:
	Value
	Value:Size
	Value/TypeSpecifierList

Default values are used when specifications are missing. The default values are
described in Defaults.
The Value part is any expression, when used in binary construction. Used in
binary matching, the Value part must be a literal or a variable. For more
information about the Value part, see
Constructing Binaries and Bitstrings
and Matching Binaries.
The Size part of the segment multiplied by the unit in TypeSpecifierList
(described later) gives the number of bits for the segment. In construction,
Size is any expression that evaluates to an integer. In matching, Size must
be a constant expression or a variable.
The TypeSpecifierList is a list of type specifiers separated by hyphens.
	Type - The most commonly used types are integer, float, and binary.
See
Bit Syntax Expressions in the Reference Manual
for a complete description.

	Signedness - The signedness specification can be either signed or
unsigned. Notice that signedness only matters for matching.

	Endianness - The endianness specification can be either big, little,
or native. Native-endian means that the endian is resolved at load time, to
be either big-endian or little-endian, depending on what is "native" for the
CPU that the Erlang machine is run on.

	Unit - The unit size is given as unit:IntegerLiteral. The allowed range
is 1-256. It is multiplied by the Size specifier to give the effective size
of the segment. The unit size specifies the alignment for binary segments
without size.

Example:
X:4/little-signed-integer-unit:8
This element has a total size of 4*8 = 32 bits, and it contains a signed
integer in little-endian order.

 Defaults

The default type for a segment is integer. The default type
does not depend on the value, even if the value is a literal. For example, the
default type in <<3.14>> is integer, not float.
The default Size depends on the type. For integer it is 8. For float it is 64.
For binary it is all of the binary. In matching, this default value is only
valid for the last element. All other binary elements in matching must have a
size specification.
The default unit depends on the type. For integer, float, and bitstring it
is 1. For binary it is 8.
The default signedness is unsigned.
The default endianness is big.

 Constructing Binaries and Bitstrings

This section describes the rules for constructing binaries using the bit syntax.
Unlike when constructing lists or tuples, the construction of a binary can fail
with a badarg exception.
There can be zero or more segments in a binary to be constructed. The expression
<<>> constructs a zero length binary.
Each segment in a binary can consist of zero or more bits. There are no
alignment rules for individual segments of type integer and float. For
binaries and bitstrings without size, the unit specifies the alignment. Since
the default alignment for the binary type is 8, the size of a binary segment
must be a multiple of 8 bits, that is, only whole bytes.
Example:
<<Bin/binary,Bitstring/bitstring>>
The variable Bin must contain a whole number of bytes, because the binary
type defaults to unit:8. A badarg exception is generated if Bin consist
of, for example, 17 bits.
The Bitstring variable can consist of any number of bits, for example, 0, 1,
8, 11, 17, 42, and so on. This is because the default unit for bitstrings
is 1.
For clarity, it is recommended not to change the unit size for binaries.
Instead, use binary when you need byte alignment and bitstring when you need
bit alignment.
The following example successfully constructs a bitstring of 7 bits, provided
that all of X and Y are integers:
<<X:1,Y:6>>
As mentioned earlier, segments have the following general syntax:
Value:Size/TypeSpecifierList
When constructing binaries, Value and Size can be any Erlang expression.
However, for syntactical reasons, both Value and Size must be enclosed in
parenthesis if the expression consists of anything more than a single literal or
a variable. The following gives a compiler syntax error:
<<X+1:8>>
This expression must be rewritten into the following, to be accepted by the
compiler:
<<(X+1):8>>

 Including Literal Strings

A literal string can be written instead of an element:
<<"hello">>
This is syntactic sugar for the following:
<<$h,$e,$l,$l,$o>>

 Matching Binaries

This section describes the rules for matching binaries, using the bit syntax.
There can be zero or more segments in a binary pattern. A binary pattern can
occur wherever patterns are allowed, including inside other patterns. Binary
patterns cannot be nested. The pattern <<>> matches a zero length binary.
Each segment in a binary can consist of zero or more bits. A segment of type
binary must have a size evenly divisible by 8 (or divisible by the unit size,
if the unit size has been changed). A segment of type bitstring has no
restrictions on the size. A segment of type float must have size 64 or 32.
As mentioned earlier, segments have the following general syntax:
Value:Size/TypeSpecifierList
When matching Value, value must be either a variable or an integer, or a
floating point literal. Expressions are not allowed.
Size must be a
guard expression, which can use
literals and previously bound variables. The following is not allowed:
foo(N, <<X:N,T/binary>>) ->
 {X,T}.
The two occurrences of N are not related. The compiler will complain that the
N in the size field is unbound.
The correct way to write this example is as follows:
foo(N, Bin) ->
 <<X:N,T/binary>> = Bin,
 {X,T}.
Note
Before OTP 23, Size was restricted to be an integer or a variable bound to
an integer.

 Binding and Using a Size Variable

There is one exception to the rule that a variable that is used as size must be
previously bound. It is possible to match and bind a variable, and use it as a
size within the same binary pattern. For example:
bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
 {Payload,Rest}.
Here Sz is bound to the value in the first byte of the binary. Sz is then
used at the number of bytes to match out as a binary.
Starting in OTP 23, the size can be a guard expression:
bar(<<Sz:8,Payload:((Sz-1)*8)/binary,Rest/binary>>) ->
 {Payload,Rest}.
Here Sz is the combined size of the header and the payload, so we will need to
subtract one byte to get the size of the payload.

 Getting the Rest of the Binary or Bitstring

To match out the rest of a binary, specify a binary field without size:
foo(<<A:8,Rest/binary>>) ->
The size of the tail must be evenly divisible by 8.
To match out the rest of a bitstring, specify a field without size:
foo(<<A:8,Rest/bitstring>>) ->
There are no restrictions on the number of bits in the tail.

 Appending to a Binary

Appending to a binary in an efficient way can be done as follows:
triples_to_bin(T) ->
 triples_to_bin(T, <<>>).

triples_to_bin([{X,Y,Z} | T], Acc) ->
 triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);
triples_to_bin([], Acc) ->
 Acc.

Introduction

This section is the Erlang reference manual. It describes the Erlang programming
language.

 Purpose

The focus of the Erlang reference manual is on the language itself, not the
implementation of it. The language constructs are described in text and with
examples rather than formally specified. This is to make the manual more
readable. The Erlang reference manual is not intended as a tutorial.
Information about implementation of Erlang can, for example, be found, in the
following:
	System Principles
Starting and stopping, boot scripts, code loading,
logging,
creating target systems

	Efficiency Guide
Memory consumption and
system limits.

	ERTS User's Guide
Crash dumps, NIFs,
drivers

 Prerequisites

It is assumed that the reader has done some programming and is familiar with
concepts such as data types and programming language syntax.

 Document Conventions

In this section, the following terminology is used:
	A sequence is one or more items. For example, a clause body consists of a
sequence of expressions. This means that there must be at least one
expression.
	A list is any number of items. For example, an argument list can consist of
zero, one, or more arguments.

If a feature has been added in R13A or later, this is mentioned in the text.

 Complete List of BIFs

For a complete list of BIFs, their arguments and return values, see module erlang
in ERTS.

 Reserved Words

The following are reserved words in Erlang:
after and andalso band begin bnot bor bsl bsr bxor case catch cond div else end fun if let maybe not of or orelse receive rem try when xor
Note: cond and let, while reserved, are currently not used by the
language.
Change
maybe is a reserved word only if feature maybe_expr is enabled. In
Erlang/OTP 25 and 26, maybe_expr is disabled by default. Starting from
Erlang/OTP 27, maybe_expr is enabled by default.

Character Set and Source File Encoding

 Character Set

The syntax of Erlang tokens allow the use of the full ISO-8859-1 (Latin-1)
character set. This is noticeable in the following ways:
	All the Latin-1 printable characters can be used and are shown without the
escape backslash convention.
	Unquoted atoms and variables can use all Latin-1 letters.

	Octal	Decimal		Class
	200 - 237	128 - 159		Control characters
	240 - 277	160 - 191	- ¿	Punctuation characters
	300 - 326	192 - 214	À - Ö	Uppercase letters
	327	215	×	Punctuation character
	330 - 336	216 - 222	Ø - Þ	Uppercase letters
	337 - 366	223 - 246	ß - ö	Lowercase letters
	367	247	÷	Punctuation character
	370 - 377	248 - 255	ø - ÿ	Lowercase letters

Table: Character Classes
The following tokens are allowed to also use Unicode characters outside of the
Latin-1 range:
	String literals. Example: "√π"
	Character literals. Example: $∑
	Comments in code.
	Quoted atoms. Example: 'μs'
	Function names. Example: 's_to_μs'(S) -> S * 1_000_000.

Atoms used as module names, application names, and node names are restricted to
the Latin-1 range.
Change
Support for Unicode in string literals, character literals, and comments was
introduced in Erlang/OTP R16B. Support for Unicode in atom and function names
was introduced in Erlang/OTP 20.

 Source File Encoding

The Erlang source file encoding is selected by a comment in one of the first
two lines of the source file. The first string that matches the regular
expression coding\s*[:=]\s*([-a-zA-Z0-9])+ selects the encoding. If the
matching string is an invalid encoding, it is ignored. The valid encodings are
Latin-1 and UTF-8, where the case of the characters can be chosen freely.
The default Erlang source file encoding if no valid coding comment is present
is UTF-8.
Two examples, both selecting Latin-1 as the source file encoding:
%% For this file we have chosen encoding = Latin-1
%% -*- coding: latin-1 -*-
Change
The default encoding for Erlang source files was changed from Latin-1 to UTF-8
in Erlang/OTP 17.0.

Data Types

Erlang provides a number of data types, which are listed in this section.

Note that Erlang has no user defined types, only composite types (data
structures) made of Erlang terms. This means that any function testing for a
composite type, typically named is_type/1, might return true for a term that
coincides with the chosen representation. The corresponding functions for built
in types do not suffer from this.

 Terms

A piece of data of any data type is called a term.

 Number

There are two types of numeric literals, integers and floats. Besides the
conventional notation, there are two Erlang-specific notations:
	$char
ASCII value or unicode code-point of the character char.
	base#value
Integer with the base base, which must be an integer in the range 2
through 36.

Leading zeroes are ignored. Single underscore characters (_) can be
inserted between digits as a visual separator.
Examples:
1> 42.
42
2> -1_234_567_890.
-1234567890
3> $A.
65
4> $\n.
10
5> 2#101.
5
6> 16#1f.
31
7> 16#4865_316F_774F_6C64.
5216630098191412324
8> 2.3.
2.3
9> 2.3e3.
2.3e3
10> 2.3e-3.
0.0023
11> 1_234.333_333
1234.333333
12> 36#helloworld.
1767707668033969

 Comparisons

Both integers and floats share the same linear order. That is, 1 compares less
than 2.4, 3 compares greater than 2.99999, and 5 is equal to 5.0.
When wanting to compare an integer with another integer or a float with another
float, it may be tempting to use the term equivalence operators (=:=, =/=)
or pattern matching. This works for integers which has a distinct representation
for every number, but there's a surprising edge case for floating-point as the
latter has two representations for zero which are considered different by the
term equivalence operators and pattern matching.
If you wish to compare floating-point numbers numerically, use the regular
comparison operators (such as ==) and add guards that require both the
arguments to be floating-point.
Note
Prior to OTP 27, the term equivalence operators had a bug where they
considered 0.0 and -0.0 to be the same term. Legacy code that makes
equality comparisons on floating-point zero should migrate to using the
equal-to (==) operator with is_float/1 guards, and
compiler warnings have been added to that effect. These can be silenced by
writing +0.0 instead, which is the same as 0.0 but makes the compiler
interpret the comparison as being purposely made against 0.0.
Note that this does not break compatibility with IEEE 754 which mandates
that 0.0 and -0.0 should compare equal: they are equal when interpreted as
numbers (==), and unequal when interpreted as opaque terms (=:=).

Examples:
1> 0.0 =:= +0.0.
true
2> 0.0 =:= -0.0.
false
3> +0.0 =:= -0.0.
false
4> +0.0 == -0.0.
true

 Representation of Floating Point Numbers

When working with floats you may not see what you expect when printing or doing
arithmetic operations. This is because floats are represented by a fixed number
of bits in a base-2 system while printed floats are represented with a base-10
system. Erlang uses 64-bit floats. Here are examples of this phenomenon:
1> 0.1+0.2.
0.30000000000000004
The real numbers 0.1 and 0.2 cannot be represented exactly as floats.
1> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
 36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
{3.602879701896397e16, true,
 3.602879701896397e16, false}.
The value 36028797018963968 can be represented exactly as a float value but
Erlang's pretty printer rounds 36028797018963968.0 to 3.602879701896397e16
(=36028797018963970.0) as all values in the range
[36028797018963966.0, 36028797018963972.0] are represented by
36028797018963968.0.
For more information about floats and issues with them see:
	What Every Programmer Should Know About Floating-Point Arithmetic
	0.30000000000000004.com/
	Floating Point Arithmetic: Issues and Limitations

If you need to work with exact decimal fractions, for instance to represent
money, it is recommended to use a library that handles that, or work in
cents instead of dollars or euros so that decimal fractions are not needed.
Also note that Erlang's floats do not exactly match IEEE 754 floats,
in that neither Inf nor NaN are supported in Erlang. Any
operation that would result in NaN, +Inf, or -Inf, will instead raise
a badarith exception.
Examples:
1> 1.0 / 0.0.
** exception error: an error occurred when evaluating an arithmetic expression
 in operator '/'/2
 called as 1.0 / 0.0
2> 0.0 / 0.0.
** exception error: an error occurred when evaluating an arithmetic expression
 in operator '/'/2
 called as 0.0 / 0.0

 Atom

An atom is a literal, a constant with name. An atom is to be enclosed in single
quotes (') if it does not begin with a lower-case letter or if it contains other
characters than alphanumeric characters, underscore (_), or @.
Examples:
hello
phone_number
name@node
'Monday'
'phone number'

 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.
Bit strings are expressed using the bit syntax.
Bit strings that consist of a number of bits that are evenly divisible
by eight are called binaries.
Examples:
1> <<10,20>>.
<<10,20>>
2> <<"ABC">>.
<<"ABC">>
3> <<1:1,0:1>>.
<<2:2>>
The is_bitstring/1 BIF tests whether a
term is a bit string, and the is_binary/1
BIF tests whether a term is a binary.
Examples:
1> is_bitstring(<<1:1>>).
true
2> is_binary(<<1:1>>).
false
3> is_binary(<<42>>).
true

For more examples, see Programming Examples.

 Reference

A term that is unique
among connected nodes. A reference is created by calling the
make_ref/0 BIF. The
is_reference/1 BIF tests whether a term
is a reference.
Examples:
1> Ref = make_ref().
#Ref<0.76482849.3801088007.198204>
2> is_reference(Ref).
true

 Fun

A fun is a functional object. Funs make it possible to create an anonymous
function and pass the function itself — not its name — as argument to other
functions.
Examples:
1> Fun1 = fun (X) -> X+1 end.
#Fun<erl_eval.6.39074546>
2> Fun1(2).
3
The is_function/1 and is_function/2
BIFs tests whether a term is a fun.
Examples:
1> F = fun() -> ok end.
#Fun<erl_eval.43.105768164>
2> is_function(F).
true
3> is_function(F, 0).
true
4> is_function(F, 1).
false
Read more about funs in Fun Expressions. For more
examples, see Programming Examples.

 Port Identifier

A port identifier identifies an Erlang port.
open_port/2 returns a port identifier. The
is_port/1 BIF tests whether a term is a port
identifier.
Read more about ports in Ports and Port Drivers.

 Pid

Pid is an abbreviation for process identifier. Each process has a Pid which
identifies the process. Pids are unique among processes that are alive on
connected nodes. However, a Pid of a terminated process may be reused as a Pid
for a new process after a while.
The BIF self/0 returns the Pid of the calling process. When
creating a new process, the parent
process will be able to get the Pid of the child process either via the return
value, as is the case when calling the spawn/3 BIF, or via
a message, which is the case when calling the
spawn_request/5 BIF. A Pid is typically used when
when sending a process a signal. The
is_pid/1 BIF tests whether a term is a Pid.
Example:
-module(m).
-export([loop/0]).

loop() ->
 receive
 who_are_you ->
 io:format("I am ~p~n", [self()]),
 loop()
 end.

1> P = spawn(m, loop, []).
<0.58.0>
2> P ! who_are_you.
I am <0.58.0>
who_are_you
Read more about processes in Processes.

 Tuple

A tuple is a compound data type with a fixed number of terms:
{Term1,...,TermN}
Each term Term in the tuple is called an element. The number of elements is
said to be the size of the tuple.
There exists a number of BIFs to manipulate tuples.
Examples:
1> P = {adam,24,{july,29}}.
{adam,24,{july,29}}
2> element(1,P).
adam
3> element(3,P).
{july,29}
4> P2 = setelement(2,P,25).
{adam,25,{july,29}}
5> tuple_size(P).
3
6> tuple_size({}).
0
7> is_tuple({a,b,c}).
true

 Map

A map is a compound data type with a variable number of key-value associations:
#{Key1 => Value1, ..., KeyN => ValueN}
Each key-value association in the map is called an association pair. The key
and value parts of the pair are called elements. The number of association
pairs is said to be the size of the map.
There exists a number of BIFs to manipulate maps.
Examples:
1> M1 = #{name => adam, age => 24, date => {july,29}}.
#{age => 24,date => {july,29},name => adam}
2> maps:get(name, M1).
adam
3> maps:get(date, M1).
{july,29}
4> M2 = maps:update(age, 25, M1).
#{age => 25,date => {july,29},name => adam}
5> map_size(M).
3
6> map_size(#{}).
0
A collection of maps processing functions are found in module maps
in STDLIB.
Read more about maps in Map Expressions.
Change
Maps were introduced as an experimental feature in Erlang/OTP R17. Their
functionality was extended and became fully supported in Erlang/OTP 18.

 List

A list is a compound data type with a variable number of terms.
[Term1,...,TermN]
Each term Term in the list is called an element. The number of elements is
said to be the length of the list.
Formally, a list is either the empty list [] or consists of a head (first
element) and a tail (remainder of the list). The tail is also a list. The
latter can be expressed as [H|T]. The notation [Term1,...,TermN] above is
equivalent with the list [Term1|[...|[TermN|[]]]].
Example:
[] is a list, thus
[c|[]] is a list, thus
[b|[c|[]]] is a list, thus
[a|[b|[c|[]]]] is a list, or in short [a,b,c]
A list where the tail is a list is sometimes called a proper list. It is
allowed to have a list where the tail is not a list, for example, [a|b].
However, this type of list is of little practical use.
Examples:
1> L1 = [a,2,{c,4}].
[a,2,{c,4}]
2> [H|T] = L1.
[a,2,{c,4}]
3> H.
a
4> T.
[2,{c,4}]
5> L2 = [d|T].
[d,2,{c,4}]
6> length(L1).
3
7> length([]).
0
A collection of list processing functions are found in module
lists in STDLIB.

 String

Strings are enclosed in double quotes ("), but is not a data type in Erlang.
Instead, a string "hello" is shorthand for the list [$h,$e,$l,$l,$o], that
is, [104,101,108,108,111].
Two adjacent string literals are concatenated into one. This is done in the
compilation.
Example:
"string" "42"
is equivalent to
"string42"
Change
Starting with Erlang/OTP 27 two adjacent string literals have to be separated
by white space, or otherwise it is a syntax error. This avoids possible confusion
with triple-quoted strings.
 Strings can also be written as triple-quoted strings, which
can be indented over multiple lines to follow the indentation of the
surrounding code. They are also verbatim, that is, they do not allow escape
sequences, and thereby do not need double quote characters to be escaped.
Change
Triple-quoted strings were added in Erlang/OTP 27. Before that 3 consecutive
double quote characters had a different meaning. There were absolutely no good
reason to write such a character sequence before triple-quoted strings
existed, but there are some gotchas; see the
Warning at the end of this
description of triple-quoted strings.
Example, with verbatim double quote characters:
"""
 Line "1"
 Line "2"
 """
That is equivalent to the normal single quoted string (which also allows
newlines):
"Line \"1\"
Line \"2\""
The opening and the closing line has got the delimiters: the """ characters.
The lines between them are the content lines. The newline on the opening line is
not regarded as string content, nor is the newline on the last content line.
The indentation is defined by the white space character sequence preceding the
delimiter on the closing line. That character sequence is stripped from all
content lines. There can only be white space before the delimiter on the closing
line, or else it is regarded as a content line.
The opening line is not allowed to have any characters other than white space
after the delimiter, and all content lines must start with the defined
indentation character sequence, otherwise the string has a syntax error.
Here is a larger example:
X = """
 First line starting with two spaces
 Not escaped: "\t \r \xFF" and """

 """
That corresponds to the normal string:
X = " First line starting with two spaces
Not escaped: \"\\t \\r \\xFF\" and \"\"\"
"
It is possible to write consecutive double quote characters on the
beginning of a content line by using more double quote characters as
delimiters. This is a string that contains exactly four double quote
characters, using a delimiter with five double quote characters:
"""""
""""
"""""
These strings are all the empty string:
""
"""
"""
"""

 """

Warning
Before Erlang/OTP 27, when triple-quoted strings were added, the character
sequence """ was interpreted as "" ", which means concatenating the empty
string to the string that follows. All sequences of an odd number of double
quote characters had this meaning.
Any even number of double quote characters was interpreted as a sequence of
empty strings, that were concatenated (to the empty string).
There was no reason to write such character sequences. But should that have
happened, the meaning has probably changed with the introduction of triple-quoted
strings.
The compiler preprocessor was patched in Erlang/OTP 26.1 to warn about 3 or
more sequential double quote characters. In Erlang/OTP 26.2 this was improved
to warn about adjacent string literals without intervening white space, which
also covers the same problem at a string end.
If the compiler should emit such a warning, please change such double quote
character sequences to have a whitespace after every second quote character,
remove redundant empty strings, or write them as one string. This makes the
code more readable, and means the same thing in all releases.

 Sigil

A sigil is a prefix to a string literal. It is not a data type in Erlang, but
a shorthand notation that indicates how to interpret the string literal. Sigils
offer mainly two things: a compact way to create UTF-8 encoded binary strings,
and a way to write verbatim strings (not having to escape \ characters),
useful for regular expressions, for example.
A sigil starts with the Tilde character (~) followed by a name defining the
sigil type.
Immediately after follows the sigil content; a character sequence between
content delimiters. The allowed delimiters are these start-end delimiter pairs:
() [] {} <>, or these characters that are both start and end delimiters:
/ | ' " ` #. Triple-quote string delimiters may
also be used.
The character escaping rules for the sigil
content depends on the sigil type. When the sigil content is verbatim, there
is no escape character. The sigil content simply ends when the end delimiter is
found, so it is impossible to have the end delimiter character in the string
content. The set of delimiters is fairly generous, and in most cases it is
possible to choose an end delimiter that's not in the literal string content.
Triple-quote string delimiters allow choosing a larger
number of quote characters in the end delimiter, than whatever is in the string
content, which thereby facilitates any content also with a sequence of "
characters at the start of a line even for a verbatim string.
The Sigils are:
	~ - The Vanilla (default) Sigil. Shorthand for a UTF-8 encoded
binary/0. This sigil does not affect the character escaping rules, so with
triple-quoted string delimiters they are the same as for ~B, and for other
string delimiters they are the same as for ~b.

	~b - The Binary Sigil. Shorthand for a
UTF-8 encoded binary(), as if calling
unicode:characters_to_binary/1 on the
sigil content. Character escaping rules are the same as for ~s.

	~B - The Verbatim Binary Sigil. As ~b, but the sigil content is
verbatim.

	~s - The String Sigil. Shorthand for a
string(), that is, a [char()] which is a list of
Unicode codepoints.
Character escaping rules are the same as for
a normal string/0. Using this sigil on a regular string does effectively
nothing.

	~S - The Verbatim String Sigil. As ~s, but the sigil content is
verbatim. Using this sigil on a triple-quoted string does effectively nothing.

Examples
<<"\"\\µA\""/utf8>> = <<$",$\\,194,181,$A,$">> =
 ~b"""
 "\\µA"
 """ = ~b'"\\µA"' =
 ~B"""
 "\µA"
 """ = ~B<"\µA"> =
 ~"""
 "\µA"
 """ = ~"\"\\µA\"" = ~/"\\µA"/
[$",$\\,$µ,$A,$"] =
 ~s"""
 "\\µA"
 """ = ~s"\"\\µA\"" = ~s["\\µA"] =
 ~S"""
 "\µA"
 """ = ~S("\µA") =
 """
 "\µA"
 """ = "\"\\µA\""
Adjacent strings are concatenated in the compilation, but that is not possible
with sigils, since they are transformed into terms that in general may not be
concatenated. So, "a" "b" is equivalent to "ab", but ~s"a" "b" or
~s"a" ~s"b" is a syntax error. ~s"a" ++ "b", however, evaluates to "ab"
since both operands to the ++ operator are strings.
Change
Sigils were introduced in Erlang/OTP 27

 Record

A record is a data structure for storing a fixed number of elements. It has
named fields and is similar to a struct in C. However, a record is not a true
data type. Instead, record expressions are translated to tuple expressions
during compilation. Therefore, record expressions are not understood by the
shell unless special actions are taken. For details, see module shell
in STDLIB.
Examples:
-module(person).
-export([new/2]).

-record(person, {name, age}).

new(Name, Age) ->
 #person{name=Name, age=Age}.

1> person:new(ernie, 44).
{person,ernie,44}
Read more about records in Records. More examples are
found in Programming Examples.

 Boolean

There is no Boolean data type in Erlang. Instead the atoms true and false
are used to denote Boolean values. The is_boolean/1
BIF tests whether a term is a boolean.
Examples:
1> 2 =< 3.
true
2> true or false.
true
3> is_boolean(true).
true
4> is_boolean(false).
true
5> is_boolean(ok).
false

 Escape Sequences

Within strings ("-delimited), quoted atoms, and the content of
~b and ~s sigils, the following escape sequences are
recognized:
	Sequence	Description
	\b	Backspace (ASCII code 8)
	\d	Delete (ASCII code 127)
	\e	Escape (ASCII code 27)
	\f	Form Feed (ASCII code 12)
	\n	Line Feed/Newline (ASCII code 10)
	\r	Carriage Return (ASCII code 13)
	\s	Space (ASCII code 32)
	\t	(Horizontal) Tab (ASCII code 9)
	\v	Vertical Tab (ASCII code 11)
	\XYZ, \YZ, \Z	Character with octal representation XYZ, YZ or Z
	\xXY	Character with hexadecimal representation XY
	\x{X...}	Character with hexadecimal representation; X... is one or more hexadecimal characters
	\^a...\^z \^A...\^Z	Control A to control Z
	\^@	NUL (ASCII code 0)
	\^[Escape (ASCII code 27)
	\^\	File Separator (ASCII code 28)
	\^]	Group Separator (ASCII code 29)
	\^^	Record Separator (ASCII code 30)
	\^_	Unit Separator (ASCII code 31)
	\^?	Delete (ASCII code 127)
	\'	Single quote
	\"	Double quote
	\\	Backslash

Table: Recognized Escape Sequences
Change
As of Erlang/OTP 26, the value of $\^? has been changed to be 127 (Delete),
instead of 31. Previous releases would allow any character following $\^; as
of Erlang/OTP 26, only the documented characters are allowed.
Within triple-quoted strings, escape sequences are not
recognized. The only text that cannot be written in a triple-quoted string is
three consecutive double quote characters at the beginning of a line (preceded
only by whitespace). This limitation can be worked around by using more double
quote characters for the string delimiters than in the string. Any number three
or above is allowed for the start delimiter and the end delimiter is the same as
the start delimiter.
When triple-quote string delimiters are used with the
~, ~B or ~S sigils the same applies, but for the
~b or ~s sigils the escape sequences for normal
strings, above, are used.
Change
Triple-quoted strings and sigils were introduced in Erlang/OTP 27.

 Type Conversions

There are a number of BIFs for type conversions.
Examples:
1> atom_to_list(hello).
"hello"
2> list_to_atom("hello").
hello
3> binary_to_list(<<"hello">>).
"hello"
4> binary_to_list(<<104,101,108,108,111>>).
"hello"
5> list_to_binary("hello").
<<104,101,108,108,111>>
6> float_to_list(7.0).
"7.00000000000000000000e+00"
7> list_to_float("7.000e+00").
7.0
8> integer_to_list(77).
"77"
9> list_to_integer("77").
77
10> tuple_to_list({a,b,c}).
[a,b,c]
11> list_to_tuple([a,b,c]).
{a,b,c}
12> term_to_binary({a,b,c}).
<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
{a,b,c}
14> binary_to_integer(<<"77">>).
77
15> integer_to_binary(77).
<<"77">>
16> float_to_binary(7.0).
<<"7.00000000000000000000e+00">>
17> binary_to_float(<<"7.000e+00">>).
7.0

Pattern Matching

 Pattern Matching

Variables are bound to values through the pattern matching mechanism. Pattern
matching occurs when evaluating the case, receive, try, and
the match operator (=) expressions.
In pattern matching, a left-hand side pattern is
matched against a right-hand side term. If the matching
succeeds, any unbound variables in the pattern become bound. If the matching
fails, an exception is raised.
Examples:
1> X.
** 1:1: variable 'X' is unbound **
2> X = 2.
2
3> X + 1.
3
4> {X, Y} = {1, 2}.
** exception error: no match of right hand side value {1,2}
5> {X, Y} = {2, 3}.
{2,3}
6> Y.
3

Modules

 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of
attributes and function declarations, each terminated by a period (.).
Example:
-module(m). % module attribute
-export([fact/1]). % module attribute

fact(N) when N>0 -> % beginning of function declaration
 N * fact(N-1); % |
fact(0) -> % |
 1. % end of function declaration
For a description of function declarations, see
Function Declaration Syntax.

 Module Attributes

A module attribute defines a certain property of a module.
A module attribute consists of a tag and a value:
-Tag(Value).
Tag must be an atom, while Value must be a literal term. As a convenience in
user-defined attributes, if the literal term Value has the syntax Name/Arity
(where Name is an atom and Arity a positive integer), the term Name/Arity
is translated to {Name,Arity}.
Any module attribute can be specified. The attributes are stored in the compiled
code and can be retrieved by calling Module:module_info(attributes), or by
using the module beam_lib in STDLIB.
Several module attributes have predefined meanings. Some of them have arity two,
but user-defined module attributes must have arity one.

 Pre-Defined Module Attributes

Pre-defined module attributes is to be placed before any function declaration.
	-module(Module). - Module declaration, defining the name of the module.
The name Module, an atom, is to be same as the file name minus the extension
.erl. Otherwise code loading does not work as
intended.
This attribute is to be specified first and is the only mandatory attribute.

	-export(Functions). - Exported functions. Specifies which of the
functions, defined within the module, that are visible from outside the
module.
Functions is a list [Name1/Arity1, ..., NameN/ArityN], where each NameI
is an atom and ArityI an integer.

	-import(Module, Functions). - Imported functions. Can be called the same
way as local functions, that is, without any module prefix.
Module, an atom, specifies which module to import functions from.
Functions is a list similar as for export.

	-moduledoc(Documentation). or -moduledoc Documentation. - The user
documentation for this module. The allowed values for Documentation are the
same as for -doc.
See the Documentation for more details about how
to use -moduledoc.

	-compile(Options). - Compiler options. Options is a single option or a
list of options. This attribute is added to the option list when compiling the
module. See module compile in Compiler.

	-vsn(Vsn). - Module version. Vsn is any literal term and can be
retrieved using beam_lib:version/1.
If this attribute is not specified, the version defaults to the MD5 checksum
of the module.

	-on_load(Function). - This attribute names a function that is to be run
automatically when a module is loaded. For more information, see
Running a Function When a Module is Loaded.

	-nifs(Functions). - Specifies which of the
functions, defined within the module, that may be loaded as NIFs with
erlang:load_nif/2.
Functions is a list [Name1/Arity1, ..., NameN/ArityN], where each NameI
is an atom and ArityI an integer.
While not strictly necessary, it is recommended to use -nifs() attribute in
any module that load NIFs, to allow the compiler to make better decisions
regarding optimizations.
There is no need to add -nifs([]) in modules that do not load NIFs. The lack
of any call to erlang:load_nif/2, from within the module, is enough for the
compiler to draw the same conclusion.
Change
The special meaning for the -nifs() attribute was introduced in Erlang/OTP
25.0. In previous releases, -nifs() was accepted, but had no special
meaning.

 Behaviour Module Attribute

It is possible to specify that the module is the callback module for a
behaviour:
-behaviour(Behaviour).
The atom Behaviour gives the name of the behaviour, which can be a
user-defined behaviour or one of the following OTP standard behaviours:
	gen_server
	gen_statem
	gen_event
	supervisor

The spelling behavior is also accepted.
The callback functions of the module can be specified either directly by the
exported function behaviour_info/1:
behaviour_info(callbacks) -> Callbacks.
or by a -callback attribute for each callback function:
-callback Name(Arguments) -> Result.
Here, Arguments is a list of zero or more arguments. The -callback attribute
is to be preferred since the extra type information can be used by tools to
produce documentation or find discrepancies.
Read more about behaviours and callback modules in
OTP Design Principles.

 Record Definitions

The same syntax as for module attributes is used for record definitions:
-record(Record, Fields).
Record definitions are allowed anywhere in a module, also among the function
declarations. Read more in Records.

 Preprocessor

The same syntax as for module attributes is used by the preprocessor, which
supports file inclusion, macros, and conditional compilation:
-include("SomeFile.hrl").
-define(Macro, Replacement).
Read more in Preprocessor.

 Setting File and Line

The same syntax as for module attributes is used for changing the pre-defined
macros ?FILE and ?LINE:
-file(File, Line).
This attribute is used by tools, such as Yecc, to inform the compiler that the
source program is generated by another tool. It also indicates the
correspondence of source files to lines of the original user-written file, from
which the source program is produced.

 Types and function specifications

A similar syntax as for module attributes is used for specifying types and
function specifications:
-type my_type() :: atom() | integer().
-spec my_function(integer()) -> integer().
Read more in Types and Function specifications.
The description is based on
EEP8 - Types and function specifications,
which is not to be further updated.

 Documentation attributes

The module attribute -doc(Documentation) is used to provide user documentation
for a function/type/callback:
-doc("Example documentation").
example() -> ok.
The attribute should be placed just before the entity it documents.The
parenthesis are optional around Documentation. The allowed values for
Documentation are:
	literal string or
utf-8 encoded binary string - The string
documenting the entity. Any literal string is allowed, so both
triple quoted strings and
sigils that translate to literal strings can be used.
The following examples are equivalent:
-doc("Example \"docs\"").
-doc(<<"Example \"docs\""/utf8>>).
-doc ~S/Example "docs"/.
-doc """
 Example "docs"
 """
-doc ~B|Example "docs"|.
For clarity it is recommended to use either normal "strings" or triple
quoted strings for documentation attributes.

	{file, file:name/0 } - Read the contents of filename and use
that as the documentation string.

	false - Set the current entity as hidden, that is, it should not be
listed as an available function and has no documentation.

	Metadata ::map() - Metadata about the current
entity. Some of the keys in the metadata have a special meaning. See
Moduledoc metadata and
Doc metadata for more details.

It is possible to have multiple Metadata doc attributes per entity, but only a
single documentation string entry is allowed.
See the Documentation guide in the Erlang Reference Manual
for more details.

 The feature directive

While not a module attribute, but rather a directive (since it might affect
syntax), there is the -feature(..) directive used for enabling and disabling
features.
The syntax is similar to that of an attribute, but has two arguments:
-feature(FeatureName, enable | disable).
Note that the feature directive can only appear
in a prefix of the module.

 Comments

Comments can be placed anywhere in a module except within strings and
quoted atoms. A comment begins with the character %, and continues
up to but not including the next end of line. A comment has no effect,
being essentially equivalent to white space.

 module_info/0 and module_info/1 functions

The compiler automatically inserts the two special, exported functions into each
module:
	Module:module_info/0
	Module:module_info/1

When called, these functions retrieve information about the module.

 module_info/0

The module_info/0 function in each module returns a list of
{Key,Value} tuples with information about the module. At the time
writing, the list contain tuples having the following Keys:
module, attributes, compile, exports, and md5. The order
and number of tuples may change without prior notice.

 module_info/1

The call module_info(Key), where Key is an atom, returns a single piece of
information about the module.
The following values are allowed for Key:
	module - Returns an atom representing the module name.

	attributes - Returns a list of {AttributeName,ValueList} tuples, where
AttributeName is the name of an attribute, and ValueList is a list of
values. Notice that a given attribute can occur more than once in the list
with different values if the attribute occurs more than once in the module.
The list of attributes becomes empty if the module is stripped with
beam_lib:strip/1.

	compile - Returns a list of tuples with information about how the module
was compiled. This list is empty if the module has been stripped with
beam_lib:strip/1.

	md5 - Returns a binary representing the MD5 checksum of the module.

	exports - Returns a list of {Name,Arity} tuples with all exported
functions in the module.

	functions - Returns a list of {Name,Arity} tuples with all functions
in the module.

	nifs - Returns a list of {Name,Arity} tuples with all NIF functions in
the module.

Documentation

Documentation in Erlang is done through the -moduledoc and -doc
attributes. For example:
-module(arith).
-moduledoc """
A module for basic arithmetic.
""".

-export([add/2]).

-doc "Adds two numbers.".
add(One, Two) -> One + Two.
The -moduledoc attribute has to be located before the first -doc attribute
or function declaration. It documents the overall purpose of the module.
The -doc attribute always precedes the function or
attribute it documents. The
attributes that can be documented are
user-defined types
(-type and -opaque) and
behaviour module attributes
(-callback).
By default the format used for documentation attributes is
Markdown but that can be changed by
setting
module documentation metadata.
A good starting point to writing Markdown is
Basic writing and formatting syntax.
For details on what is allowed to be part of the -moduledoc and -doc
attributes, see
Documentation Attributes.
-doc attributes have been available since Erlang/OTP 27.

 Documentation metadata

It is possible to add metadata to the documentation entry. You do this by adding
a -moduledoc or -doc attribute with a map as argument. For example:
-module(arith).
-moduledoc """
A module for basic arithmetic.
""".
-moduledoc #{since => "1.0"}.

-export([add/2]).

-doc "Adds two numbers.".
-doc(#{since => "1.0"}).
add(One, Two) -> One + Two.
The metadata is used by documentation tools to provide extra information to the
user. There can be multiple metadata documentation entries, in which case the
maps will be merged with the latest taking precedence if there are duplicate
keys. Example:
-doc "Adds two numbers.".
-doc #{since => "1.0", author => "Joe"}.
-doc #{since => "2.0"}.
add(One, Two) -> One + Two.
This will result in a metadata entry of #{since => "2.0", author => "Joe"}.
The keys and values in the metadata map can be any type, but it is recommended
that only atoms are used for keys and
strings for the values.

 External documentation files

The -moduledoc and -doc can also be placed in external files. To do so use
-doc {file, "path/to/doc.md"} to point to the documentation. The path used is
relative to the file where the -doc attribute is located. For example:
%% doc/add.md
Adds two numbers.
and
%% src/arith.erl
-doc({file, "../doc/add.md"}).
add(One, Two) -> One + Two.

 Documenting a module

The module description should include details on how to use the API and examples
of the different functions working together. Here is a good place to use images
and other diagrams to better show the usage of the module. Instead of writing a
long text in the moduledoc attribute, it could be better to break it out into
an external page.
The moduledoc attribute should start with a short paragraph describing the
module and then go into greater details. For example:
-module(arith).
-moduledoc """
 A module for basic arithmetic.

 This module can be used to add and subtract values. For example:

   ```erlang
   1> arith:substract(arith:add(2, 3), 1).
   4
   ```
 """.

 Moduledoc metadata

There are three reserved metadata keys for -moduledoc:
	since - Shows in which version of the application the module was added.
If this is added, all functions, types, and callbacks within will also receive
the same since value unless specified in the metadata of the function, type
or callback.
	deprecated - Shows a text in the documentation explaining that it is
deprecated and what to use instead.
	format - The format to use for all documentation in this module. The
default is text/markdown. It should be written using the
mime type
of the format.

Example:
-moduledoc {file, "../doc/arith.asciidoc"}.
-moduledoc #{since => "0.1", format => "text/asciidoc"}.
-moduledoc #{deprecated => "Use the Erlang arithmetic operators instead."}.

 Documenting functions, user-defined types, and callbacks

Functions, types, and callbacks can be documented using the -doc attribute.
Each entry should start with a short paragraph describing the purpose of entity,
and then go into greater detail in needed.
It is not recommended to include images or diagrams in this documentation as it
is used by IDEs and c:h/1 to show the documentation to the user.
For example:
-doc """
A number that can be used by the arith module.

We use a special number here so that we know
that this number comes from this module.
""".
-opaque number() :: {arith, erlang:number()}.

-doc """
Adds two numbers.

Example:

```
1> arith:add(arith:number(1), arith:number(2)). {number, 3}
```
""".
-spec add(number(), number()) -> number().
add({number, One}, {number, Two}) -> {number, One + Two}.

 Doc metadata

There are four reserved metadata keys for -doc:
	since => unicode:chardata() - Shows which version of the application the
module was added.

	deprecated => unicode:chardata() - Shows a text in the documentation
explaining that it is deprecated and what to use instead. The compiler will
automatically insert this key if there is a -deprecated attribute marking a
function as deprecated.

	equiv => unicode:chardata() | F/A | F(...) - Notes that this function is equivalent to
another function in this module. The equivalence can be described using either
Func/Arity, Func(Args) or a unicode string. For example:
-doc #{equiv => add/3}.
add(One, Two) -> add(One, Two, []).
add(One, Two, Options) -> ...
or
-doc #{equiv => add(One, Two, [])}.
-spec add(One :: number(), Two :: number()) -> number().
add(One, Two) -> add(One, Two, []).
add(One, Two, Options) -> ...
The entry into the EEP-48 doc chunk metadata is
the value converted to a string.

	exported => boolean() - A boolean/0 signifying if the entry is exported
or not. This value is automatically set by the compiler and should not be set
by the user.

 Doc signatures

The doc signature is a short text shown to describe the function and its arguments.
By default it is determined by looking at the names of the arguments in the
-spec or function. For example:
add(One, Two) -> One + Two.

-spec sub(One :: integer(), Two :: integer()) -> integer().
sub(X, Y) -> X - Y.
will have a signature of add(One, Two) and sub(One, Two).
For types or callbacks, the signature is derived from the type or callback
specification. For example:
-type number(Value) :: {number, Value}.
%% signature will be `number(Value)`

-opaque number() :: {number, number()}.
%% signature will be `number()`

-callback increment(In :: number()) -> Out.
%% signature will be `increment(In)`

-callback increment(In) -> Out when In :: number().
%% signature will be `increment(In)`
If it is not possible to "easily" figure out a nice signature from the code, the
MFA syntax is used instead. For example: add/2, number/1, increment/1
It is possible to supply a custom signature by placing it as the first line of the
-doc attribute. The provided signature must be in the form of a function
declaration up until the ->. For example:
-doc """
add(One, Two)

Adds two numbers.
""".
add(A, B) -> A + B.
Will create the signature add(One, Two). The signature will be removed from the
documentation string, so in the example above only the text "Adds two numbers"
will be part of the documentation. This works for functions, types, and
callbacks.

 Links in Markdown

When writing documentation in Markdown, links are automatically found in any
inline code segment that looks like an MFA. For example:
-doc "See `sub/2` for more details".
will create a link to the sub/2 function in the current module if it exists.
One can also use `sub/2`as the link target. For example:
-doc "See [subtract](`sub/2`) for more details".
-doc "See [`sub/2`] for more details".
-doc """
See [subtract] for more details

[subtract]: `sub/2`
""".
-doc """
See [subtract][1] for more details

[1]: `sub/2`
""".
The above examples result in the same link being created.
The link can also other entities:
	remote functions - Use module:function/arity syntax.

Example:
-doc "See `arith:sub/2` for more details".
	modules - Write the module with a m prefix. Use anchors to jump to a
specific place in the module.

Example:
-doc "See `m:arith` for more details".
-doc "See `m:arith#anchor` for more details".
	types - Use the same syntax as for local/remote function but add a t
prefix.

Example:
-doc "See `t:number/0` for more details".
-doc "See `t:arith:number/0` for more details".
	callbacks - Use the same syntax as for local/remote function but add a c
prefix.

Example:
-doc "See `c:increment/0` for more details".
-doc "See `c:arith:increment/0` for more details".
	extra pages - For extra pages in the current application use a normal link,
for example "[release notes](notes.md)". For extra pages in another
application use the e prefix and state which application the page belongs
to. One can also use anchors to jump to a specific place in the page.

Example:
-doc "See `e:stdlib:unicode_usage` for more details".
-doc "See `e:stdlib:unicode_usage#notes-about-raw-filenames` for more details".

 What is visible versus hidden?

An Erlang application normally consists of various public and private
modules. That is, modules that should be used by other applications and modules
that should not. By default all modules in an application are visible, but by
setting -moduledoc false. specific modules can be hidden from being listed as
part of the available API.
An Erlang module consists of public and private functions and type
attributes. By default, all exported functions, exported types and callbacks are
considered visible and part of the modules public API. In addition, any
non-exported type that is referred to by any other visible type attribute is
also visible, but not considered to be part of the public API. For example:
-export([example/0]).

-type private() :: one.
-spec example() -> private().
example() -> one.
in the above code, the function example/0 is exported and it referenced the
un-exported type private/0. Therefore both example/0 and private/0 will be
marked as visible. The private/0 type will have the metadata field exported
set to false to show that it is not part of the public API.
If you want to make a visible entity hidden you need to set the -doc attribute
to false. Let us revisit our previous example:
-export([example/0]).

-type private() :: one.
-spec example() -> private().
-doc false.
example() -> one.
The function example/0 is exported but explicitly marked as hidden; therefore
both example/0 and private/0 will be hidden.
Any documentation added to an automatically hidden entity (non-exported function
or type) is ignored and will generate a warning. Such functions can be
documented using comments.

 Compiling and getting documentation

The Erlang compiler will by default insert documentation into
EEP-48 documentation chunks when compiling a module.
By passing the no_docs flag to compile:file/1,
or +no_docs to erlc, no documentation chunk is inserted.
The documentation can then be retrieved using code:get_doc/1, or viewed using
the shell built-in command h/1). For example:
1> h(arith).

 arith

 A module for basic arithmetic.

2> h(arith, add).

 add(One, Two)

 Adds two numbers.

 Using ExDoc to generate HTML/ePub documentation

ExDoc has built-in support to generate
documentation from Markdown. The simplest way is by using the
rebar3_ex_doc plugin. To set up a
rebar3 project to use ExDoc to generate
documentation add the following to your rebar3.config.
%% Enable the plugin
{plugins, [rebar3_ex_doc]}.

{ex_doc, [
 {extras, ["README.md"]},
 {main, "README.md"},
 {source_url, "https://github.com/namespace/your_app"}
]}.
When configured you can run rebar3 ex_doc to generate the
documentation to doc/index.html. For more details and options see
the rebar3_ex_doc documentation.
You can also download the
release escript bundle from
github and run it from the command line. The documentation for using the escript
is found by running ex_doc --help.
If you are writing documentation that will be using
ExDoc to generate HTML/ePub it is highly
recommended to read its documentation.

Functions

 Function Declaration Syntax

A function declaration is a sequence of function clauses separated by
semicolons, and terminated by a period (.).
A function clause consists of a clause head and a clause body, separated by
->.
A clause head consists of the function name, an argument list, and an optional
guard sequence beginning with the keyword when:
Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
 Body1;
...;
Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
 BodyK.
The function name is an atom. Each argument is a pattern.
The number of arguments N is the arity of the function. A function is
uniquely defined by the module name, function name, and arity. That is, two
functions with the same name and in the same module, but with different arities
are two different functions.
A function named f in module mod and with arity N is often denoted as
mod:f/N.
A clause body consists of a sequence of expressions separated by comma (,):
Expr1,
...,
ExprN
Valid Erlang expressions and guard sequences are described in
Expressions.
Example:
fact(N) when N > 0 -> % first clause head
 N * fact(N-1); % first clause body

fact(0) -> % second clause head
 1. % second clause body

 Function Evaluation

When a function M:F/N is called, first the code for the function is located.
If the function cannot be found, an undef runtime error occurs. Notice that
the function must be exported to be visible outside the module it is defined in.
If the function is found, the function clauses are scanned sequentially until a
clause is found that fulfills both of the following two conditions:
	The patterns in the clause head can be successfully matched against the given
arguments.
	The guard sequence, if any, is true.

If such a clause cannot be found, a function_clause runtime error occurs.
If such a clause is found, the corresponding clause body is evaluated. That is,
the expressions in the body are evaluated sequentially and the value of the last
expression is returned.
Consider the function fact:
-module(mod).
-export([fact/1]).

fact(N) when N > 0 ->
 N * fact(N - 1);
fact(0) ->
 1.
Assume that you want to calculate the factorial for 1:
1> mod:fact(1).
Evaluation starts at the first clause. The pattern N is matched against
argument 1. The matching succeeds and the guard (N > 0) is true, thus N is
bound to 1, and the corresponding body is evaluated:
N * fact(N-1) => (N is bound to 1)
1 * fact(0)
Now, fact(0) is called, and the function clauses are scanned
sequentially again. First, the pattern N is matched against 0. The
matching succeeds, but the guard (N > 0) is false. Second, the
pattern 0 is matched against the argument 0. The matching succeeds
and the body is evaluated:
1 * fact(0) =>
1 * 1 =>
1
Evaluation has succeed and mod:fact(1) returns 1.
If mod:fact/1 is called with a negative number as argument, no clause head
matches. A function_clause runtime error occurs.

 Tail recursion

If the last expression of a function body is a function call, a
tail-recursive call is done. This is to ensure that no system
resources, for example, call stack, are consumed. This means that an
infinite loop using tail-recursive calls will not exhaust the call
stack and can (in principle) run forever.
Example:
loop(N) ->
 io:format("~w~n", [N]),
 loop(N+1).
The earlier factorial example is a counter-example. It is not
tail-recursive, since a multiplication is done on the result of the recursive
call to fact(N-1).

 Built-In Functions (BIFs)

Built-In Functions (BIFs) are implemented in C code in the runtime
system. BIFs do things that are difficult or impossible to implement
in Erlang. Most of the BIFs belong to module erlang, but there
are also BIFs belonging to a few other modules, for example lists
and ets.
The most commonly used BIFs belonging to erlang are auto-imported. They do
not need to be prefixed with the module name. Which BIFs that are auto-imported
is specified in the erlang module in ERTS. For example, standard-type
conversion BIFs like atom_to_list and BIFs allowed in guards can be called
without specifying the module name.
Examples:
1> tuple_size({a,b,c}).
3
2> atom_to_list('Erlang').
"Erlang"

Types and Function Specifications

 The Erlang Type Language

Erlang is a dynamically typed language. Still, it comes with a notation for
declaring sets of Erlang terms to form a particular type. This effectively forms
specific subtypes of the set of all Erlang terms.
Subsequently, these types can be used to specify types of record fields and also
the argument and return types of functions.
Type information can be used for the following:
	To document function interfaces
	To provide more information for bug detection tools, such as Dialyzer
	To be leveraged by documentation tools, such as
ExDoc or EDoc, for generating
documentation

It is expected that the type language described in this section
supersedes and replaces the purely comment-based @type and @spec
declarations used by EDoc.

 Types and their Syntax

Types describe sets of Erlang terms. Types consist of, and are built from, a set
of predefined types, for example, integer/0, atom/0, and pid/0.
Predefined types represent a typically infinite set of Erlang terms that belong
to this type. For example, the type atom/0 denotes the set of all Erlang
atoms.
For integers and atoms, it is allowed for singleton types; for example, the
integers -1 and 42, or the atoms 'foo' and 'bar'. All other types are
built using unions of either predefined types or singleton types. In a type
union between a type and one of its subtypes, the subtype is absorbed by the
supertype. Thus, the union is then treated as if the subtype was not a
constituent of the union. For example, the type union:
atom() | 'bar' | integer() | 42
describes the same set of terms as the type union:
atom() | integer()
Because of subtype relations that exist between types, all types, except
dynamic/0, form a lattice where the top-most element, any/0, denotes the
set of all Erlang terms and the bottom-most element, none/0, denotes the
empty set of terms.

To facilitate gradual typing of
Erlang, the type dynamic/0 is provided. The type dynamic/0
represents a statically unknown type. It is similar to
Any in Python,
any in
TypeScript and dynamic in
Hack. any/0 and dynamic/0 interact with
success typing the
same way, so Dialyzer doesn't distinguish between them.
The set of predefined types and the syntax for types follows:
Type :: any() %% The top type, the set of all Erlang terms
 | none() %% The bottom type, contains no terms
 | dynamic()
 | pid()
 | port()
 | reference()
 | [] %% nil
 | Atom
 | Bitstring
 | float()
 | Fun
 | Integer
 | List
 | Map
 | Tuple
 | Union
 | UserDefined %% described in Type Declarations of User-Defined Types

Atom :: atom()
 | Erlang_Atom %% 'foo', 'bar', ...

Bitstring :: <<>>
 | <<_:M>> %% M is an Integer_Value that evaluates to a positive integer
 | <<_:_*N>> %% N is an Integer_Value that evaluates to a positive integer
 | <<_:M, _:_*N>>

Fun :: fun() %% any function
 | fun((...) -> Type) %% any arity, returning Type
 | fun(() -> Type)
 | fun((TList) -> Type)

Integer :: integer()
 | Integer_Value
 | Integer_Value..Integer_Value %% specifies an integer range

Integer_Value :: Erlang_Integer %% ..., -1, 0, 1, ... 42 ...
 | Erlang_Character %% $a, $b ...
 | Integer_Value BinaryOp Integer_Value
 | UnaryOp Integer_Value

BinaryOp :: '*' | 'div' | 'rem' | 'band' | '+' | '-' | 'bor' | 'bxor' | 'bsl' | 'bsr'

UnaryOp :: '+' | '-' | 'bnot'

List :: list(Type) %% Proper list ([]-terminated)
 | maybe_improper_list(Type1, Type2) %% Type1=contents, Type2=termination
 | nonempty_improper_list(Type1, Type2) %% Type1 and Type2 as above
 | nonempty_list(Type) %% Proper non-empty list

Map :: #{} %% denotes the empty map
 | #{AssociationList}

Tuple :: tuple() %% denotes a tuple of any size
 | {}
 | {TList}

AssociationList :: Association
 | Association, AssociationList

Association :: Type := Type %% denotes a mandatory association
 | Type => Type %% denotes an optional association

TList :: Type
 | Type, TList

Union :: Type1 | Type2
Integer values are either integer or character literals or expressions
consisting of possibly nested unary or binary operations that evaluate to an
integer. Such expressions can also be used in bit strings and ranges.
The general form of bit strings is <<_:M, _:_*N>>, where M and N must
evaluate to positive integers. It denotes a bit string that is M + (k*N) bits
long (that is, a bit string that starts with M bits and continues with k
segments of N bits each, where k is also a positive integer). The notations
<<_:_*N>>, <<_:M>>, and <<>> are convenient shorthands for the cases that
M or N, or both, are zero.
Because lists are commonly used, they have shorthand type notations. The types
list(T) and nonempty_list(T) have the
shorthands [T] and [T,...], respectively. The only difference between the
two shorthands is that [T] can be an empty list but [T,...] cannot.
Notice that the shorthand for list/0, that is, the list of elements of
unknown type, is [_] (or [any()]), not []. The notation [] specifies the
singleton type for the empty list.
The general form of map types is #{AssociationList}. The key types in
AssociationList are allowed to overlap, and if they do, the leftmost
association takes precedence. A map association has a key in AssociationList
if it belongs to this type. AssociationList can contain both mandatory (:=)
and optional (=>) association types. If an association type is mandatory, an
association with that type needs to be present. In the case of an optional
association type it is not required for the key type to be present.
The notation #{} specifies the singleton type for the empty map. Note that
this notation is not a shorthand for the map/0 type.
For convenience, the following types are also built-in. They can be thought as
predefined aliases for the type unions also shown in the table.

	Built-in type	Defined as
	term/0	any/0
	binary/0	<<_:_*8>>
	nonempty_binary/0	<<_:8, _:_*8>>
	bitstring/0	<<_:_*1>>
	nonempty_bitstring/0	<<_:1, _:_*1>>
	boolean/0	'false' | 'true'
	byte/0	0..255
	char/0	0..16#10ffff
	nil/0	[]
	number/0	integer/0 | float/0
	list/0	[any()]
	maybe_improper_list/0	maybe_improper_list(any(), any())
	nonempty_list/0	nonempty_list(any())
	string/0	[char()]
	nonempty_string/0	[char(),...]
	iodata/0	iolist() | binary()
	iolist/0	maybe_improper_list(byte() | binary() | iolist(), binary() | [])
	map/0	#{any() => any()}
	function/0	fun()
	module/0	atom/0
	mfa/0	{module(),atom(),arity()}
	arity/0	0..255
	identifier/0	pid() | port() | reference()
	node/0	atom/0
	timeout/0	'infinity' | non_neg_integer()
	no_return/0	none/0

Table: Built-in types, predefined aliases
In addition, the following three built-in types exist and can be thought as
defined below, though strictly their "type definition" is not valid syntax
according to the type language defined above.
	Built-in type	Can be thought defined by the syntax
	non_neg_integer/0	0..
	pos_integer/0	1..
	neg_integer/0	..-1

Table: Additional built-in types
Note
The following built-in list types also exist, but they are expected to be
rarely used. Hence, they have long names:
nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
nonempty_improper_list(Type1, Type2)
nonempty_maybe_improper_list(Type1, Type2)
where the last two types define the set of Erlang terms one would expect.
Also for convenience, record notation is allowed to be used. Records are
shorthands for the corresponding tuples:
Record :: #Erlang_Atom{}
 | #Erlang_Atom{Fields}
Records are extended to possibly contain type information. This is described in
Type Information in Record Declarations.

 Redefining built-in types

Change
Starting from Erlang/OTP 26, it is permitted to define a type having the same
name as a built-in type.
It is recommended to avoid deliberately reusing built-in names because it can be
confusing. However, when an Erlang/OTP release introduces a new type, code that
happened to define its own type having the same name will continue to work.
As an example, imagine that the Erlang/OTP 42 release introduces a new type
gadget() defined like this:
-type gadget() :: {'gadget', reference()}.
Further imagine that some code has its own (different) definition of gadget(),
for example:
-type gadget() :: #{}.
Since redefinitions are allowed, the code will still compile (but with a
warning), and Dialyzer will not emit any additional warnings.

 Type Declarations of User-Defined Types

As seen, the basic syntax of a type is an atom followed by closed parentheses.
New types are declared using -type and -opaque attributes as in the
following:
-type my_struct_type() :: Type.
-opaque my_opaq_type() :: Type.
The type name is the atom my_struct_type, followed by parentheses. Type is a
type as defined in the previous section. A current restriction is that Type
can contain only predefined types, or user-defined types which are either of the
following:
	Module-local type, that is, with a definition that is present in the code of
the module
	Remote type, that is, type defined in, and exported by, other modules; more
about this soon.

For module-local types, the restriction that their definition exists in the
module is enforced by the compiler and results in a compilation error. (A
similar restriction currently exists for records.)
Type declarations can also be parameterized by including type variables between
the parentheses. The syntax of type variables is the same as Erlang variables,
that is, starts with an upper-case letter. These variables is to
appear on the RHS of the definition. A concrete example follows:
-type orddict(Key, Val) :: [{Key, Val}].
A module can export some types to declare that other modules are allowed to
refer to them as remote types. This declaration has the following form:
-export_type([T1/A1, ..., Tk/Ak]).
Here the Tis are atoms (the name of the type) and the Ais are their arguments.
Example:
-export_type([my_struct_type/0, orddict/2]).
Assuming that these types are exported from module 'mod', you can refer to
them from other modules using remote type expressions like the following:
mod:my_struct_type()
mod:orddict(atom(), term())
It is not allowed to refer to types that are not declared as exported.
Types declared as opaque represent sets of terms whose structure is not
supposed to be visible from outside of their defining module. That is, only the
module defining them is allowed to depend on their term structure. Consequently,
such types do not make much sense as module local - module local types are not
accessible by other modules anyway - and is always to be exported.
Read more on Opaques

 Type Information in Record Declarations

The types of record fields can be specified in the declaration of the record.
The syntax for this is as follows:
-record(rec, {field1 :: Type1, field2, field3 :: Type3}).
For fields without type annotations, their type defaults to any(). That is, the
previous example is a shorthand for the following:
-record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).
In the presence of initial values for fields, the type must be declared after
the initialization, as follows:
-record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).
The initial values for fields are to be compatible with (that is, a member of)
the corresponding types. This is checked by the compiler and results in a
compilation error if a violation is detected.
Change
Before Erlang/OTP 19, for fields without initial values, the singleton type
'undefined' was added to all declared types. In other words, the following
two record declarations had identical effects:
-record(rec, {f1 = 42 :: integer(),
 f2 :: float(),
 f3 :: 'a' | 'b'}).

-record(rec, {f1 = 42 :: integer(),
 f2 :: 'undefined' | float(),
 f3 :: 'undefined' | 'a' | 'b'}).
This is no longer the case. If you require 'undefined' in your record field
type, you must explicitly add it to the typespec, as in the 2nd example.
Any record, containing type information or not, once defined, can be used as a
type using the following syntax:
#rec{}
In addition, the record fields can be further specified when using a record type
by adding type information about the field as follows:
#rec{some_field :: Type}
Any unspecified fields are assumed to have the type in the original record
declaration.
Note
When records are used to create patterns for ETS and Mnesia match functions,
Dialyzer may need some help not to emit bad warnings. For example:
-type height() :: pos_integer().
-record(person, {name :: string(), height :: height()}).

lookup(Name, Tab) ->
 ets:match_object(Tab, #person{name = Name, _ = '_'}).
Dialyzer will emit a warning since '_' is not in the type of record field
height.
The recommended way of dealing with this is to declare the smallest record
field types to accommodate all your needs, and then create refinements as
needed. The modified example:
-record(person, {name :: string(), height :: height() | '_'}).

-type person() :: #person{height :: height()}.
In specifications and type declarations the type person() is to be preferred
before #person{}.

 Specifications for Functions

A specification (or contract) for a function is given using the -spec
attribute. The general format is as follows:
-spec Function(ArgType1, ..., ArgTypeN) -> ReturnType.
An implementation of the function with the same name Function must exist in
the current module, and the arity of the function must match the number of
arguments, otherwise the compilation fails.
The following longer format with module name is also valid as long as Module
is the name of the current module. This can be useful for documentation
purposes.
-spec Module:Function(ArgType1, ..., ArgTypeN) -> ReturnType.
Also, for documentation purposes, argument names can be given:
-spec Function(ArgName1 :: Type1, ..., ArgNameN :: TypeN) -> RT.
A function specification can be overloaded. That is, it can have several types,
separated by a semicolon (;). For example:
-spec foo(T1, T2) -> T3;
 (T4, T5) -> T6.
A current restriction, which currently results in a warning by Dialyzer, is that
the domains of the argument types cannot overlap. For example, the following
specification results in a warning:
-spec foo(pos_integer()) -> pos_integer();
 (integer()) -> integer().
Type variables can be used in specifications to specify relations for the input
and output arguments of a function. For example, the following specification
defines the type of a polymorphic identity function:
-spec id(X) -> X.
Notice that the above specification does not restrict the input and output type
in any way. These types can be constrained by guard-like subtype constraints and
provide bounded quantification:
-spec id(X) -> X when X :: tuple().
Currently, the :: constraint (read as "is a subtype of") is the only guard
constraint that can be used in the when part of a -spec attribute.
Note
The above function specification uses multiple occurrences of the same type
variable. That provides more type information than the following function
specification, where the type variables are missing:
-spec id(tuple()) -> tuple().
The latter specification says that the function takes some tuple and returns
some tuple. The specification with the X type variable specifies that the
function takes a tuple and returns the same tuple.
However, it is up to the tools that process the specifications to choose
whether to take this extra information into account or not.
The scope of a :: constraint is the (...) -> RetType specification after
which it appears. To avoid confusion, it is suggested that different variables
are used in different constituents of an overloaded contract, as shown in the
following example:
-spec foo({X, integer()}) -> X when X :: atom();
 ([Y]) -> Y when Y :: number().
Some functions in Erlang are not meant to return; either because they define
servers or because they are used to throw exceptions, as in the following
function:
my_error(Err) -> throw({error, Err}).
For such functions, it is recommended to use the special no_return/0 type
for their "return", through a contract of the following form:
-spec my_error(term()) -> no_return().
Note
Erlang uses the shorthand version _ as an anonymous type variable equivalent
to term/0 or any/0. For example, the following function
-spec Function(string(), _) -> string().
is equivalent to:
-spec Function(string(), any()) -> string().

Opaques

 Opaque Type Aliases

The main use case for opacity in Erlang is to hide the implementation of a data
type, enabling evolving the API while minimizing the risk of breaking consumers.
The runtime does not check opacity. Dialyzer provides some opacity-checking, but
the rest is up to convention.
This document explains what Erlang opacity is (and the trade-offs involved) via
the example of the sets:set() data type. This type was
defined in the sets module like this:
-opaque set(Element) :: #set{segs :: segs(Element)}.
OTP 24 changed the definition to the following in
this commit.
-opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.
And this change was safer and more backwards-compatible than if the type had
been defined with -type instead of -opaque. Here is why: when a module
defines an -opaque, the contract is that only the defining module should rely
on the definition of the type: no other modules should rely on the definition.
This means that code that pattern-matched on set as a record/tuple technically
broke the contract, and opted in to being potentially broken when the definition
of set() changed. Before OTP 24, this code printed ok. In OTP 24 it may
error:
case sets:new() of
 Set when is_tuple(Set) ->
 io:format("ok")
end.
When working with an opaque defined in another module, here are some
recommendations:
	Don't examine the underlying type using pattern-matching, guards, or functions
that reveal the type, such as tuple_size/1 .
	Instead, use functions provided by the module for working with the type. For
example, sets module provides sets:new/0, sets:add_element/2,
sets:is_element/2, and so on.
	sets:set(a) is a subtype of sets:set(a | b) and not the
other way around. Generally, you can rely on the property that the_opaque(T)
is a subtype of the_opaque(U) when T is a subtype of U.

When defining your own opaques, here are some recommendations:
	Since consumers are expected to not rely on the definition of the opaque type,
you must provide functions for constructing, querying, and deconstructing
instances of your opaque type. For example, sets can be constructed with
sets:new/0, sets:from_list/1, sets:add_element/2, queried with
sets:is_element/2, and deconstructed withsets:to_list/1.
	Don't define an opaque with a type variable in parameter position. This breaks
the normal and expected behavior that (for example) my_type(a) is a subtype
of my_type(a | b)
	Add specs to exported functions that use the opaque type

Note that opaques can be harder to work with for consumers, since the consumer
is expected not to pattern-match and must instead use functions that the author
of the opaque type provides to use instances of the type.
Also, opacity in Erlang is skin-deep: the runtime does not enforce
opacity-checking. So now that sets are implemented in terms of maps, an
is_map/1 check on a set will pass. The opacity rules are only
enforced by convention and by additional tooling such as Dialyzer, and this
enforcement is not total. A determined consumer of sets can still reveal the
structure of the set, for example by printing, serializing, or using a set as a
term/0 and inspecting it via functions like is_map/1 or
maps:get/2. Also, Dialyzer must make some
approximations.

Expressions

In this section, all valid Erlang expressions are listed. When writing Erlang
programs, it is also allowed to use macro and record expressions. However,
these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro and record expressions are covered in separate
sections:
	Preprocessor
	Records

 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated,
unless explicitly stated otherwise. For example, consider the expression:
Expr1 + Expr2
Expr1 and Expr2, which are also expressions, are evaluated first — in any
order — before the addition is performed.
Many of the operators can only be applied to arguments of a certain type. For
example, arithmetic operators can only be applied to numbers. An argument of the
wrong type causes a badarg runtime error.

 Terms

The simplest form of expression is a term, that is one of
integer/0, float/0, atom/0, string/0, list/0,
map/0, or tuple/0. The return value is the term itself.

 Variables

A variable is an expression. If a variable is bound to a value, the return value
is this value. Unbound variables are only allowed in patterns.
Variables start with an uppercase letter or underscore (_). Variables can
contain alphanumeric characters, underscore, and @.
Examples:
X
Name1
PhoneNumber
Phone_number
_
_Height
name@node
Variables are bound to values using pattern matching. Erlang uses
single assignment, that is, a variable can only be bound once.
The anonymous variable is denoted by underscore (_) and can be used when a
variable is required but its value can be ignored.
Example:
[H|_] = [1,2,3]
Variables starting with underscore (_), for example, _Height, are normal
variables, not anonymous. However, they are ignored by the compiler in the sense
that they do not generate warnings.
Example:
The following code:
member(_, []) ->
 [].
can be rewritten to be more readable:
member(Elem, []) ->
 [].
This causes a warning for an unused variable, Elem. To avoid the warning,
the code can be rewritten to:
member(_Elem, []) ->
 [].
Notice that since variables starting with an underscore are not anonymous, the
following example matches:
{_,_} = {1,2}
But this example fails:
{_N,_N} = {1,2}
The scope for a variable is its function clause. Variables bound in a branch of
an if, case, or receive expression must be bound in all branches to have a
value outside the expression. Otherwise they are regarded as unsafe outside
the expression.
For the try expression variable scoping is limited so that variables bound in
the expression are always unsafe outside the expression.

 Patterns

A pattern has the same structure as a term but can contain unbound variables.
Example:
Name1
[H|T]
{error,Reason}
Patterns are allowed in clause heads, case expressions,
receive expressions, and
match expressions.

 The Compound Pattern Operator

If Pattern1 and Pattern2 are valid patterns, the following is also a valid
pattern:
Pattern1 = Pattern2
When matched against a term, both Pattern1 and Pattern2 are matched against
the term. The idea behind this feature is to avoid reconstruction of terms.
Example:
f({connect,From,To,Number,Options}, To) ->
 Signal = {connect,From,To,Number,Options},
 ...;
f(Signal, To) ->
 ignore.
can instead be written as
f({connect,_,To,_,_} = Signal, To) ->
 ...;
f(Signal, To) ->
 ignore.
The compound pattern operator does not imply that its operands are matched in
any particular order. That means that it is not legal to bind a variable in
Pattern1 and use it in Pattern2, or vice versa.

 String Prefix in Patterns

When matching strings, the following is a valid pattern:
f("prefix" ++ Str) -> ...
This is syntactic sugar for the equivalent, but harder to read:
f([$p,$r,$e,$f,$i,$x | Str]) -> ...

 Expressions in Patterns

An arithmetic expression can be used within a pattern if it meets both of the
following two conditions:
	It uses only numeric or bitwise operators.
	Its value can be evaluated to a constant when complied.

Example:
case {Value, Result} of
 {?THRESHOLD+1, ok} -> ...

 The Match Operator

The following matches Pattern against Expr:
Pattern = Expr
If the matching succeeds, any unbound variable in the pattern becomes bound and
the value of Expr is returned.
If multiple match operators are applied in sequence, they will be evaluated from
right to left.
If the matching fails, a badmatch run-time error occurs.
Examples:
1> {A, B} = T = {answer, 42}.
{answer,42}
2> A.
answer
3> B.
42
4> T.
{answer,42}
5> {C, D} = [1, 2].
** exception error: no match of right-hand side value [1,2]
Because multiple match operators are evaluated from right to left, it means
that:
Pattern1 = Pattern2 = . . . = PatternN = Expression
is equivalent to:
Temporary = Expression,
PatternN = Temporary,
 .
 .
 .,
Pattern2 = Temporary,
Pattern = Temporary

 The Match Operator and the Compound Pattern Operator

Note
This is an advanced section, which references to topics not yet introduced. It
can safely be skipped on a first reading.
The = character is used to denote two similar but distinct operators: the
match operator and the compound pattern operator. Which one is meant is
determined by context.
The compound pattern operator is used to construct a compound pattern from two
patterns. Compound patterns are accepted everywhere a pattern is accepted. A
compound pattern matches if all of its constituent patterns match. It is not
legal for a pattern that is part of a compound pattern to use variables (as keys
in map patterns or sizes in binary patterns) bound in other sub patterns of the
same compound pattern.
Examples:
1> fun(#{Key := Value} = #{key := Key}) -> Value end.
* 1:7: variable 'Key' is unbound
2> F = fun({A, B} = E) -> {E, A + B} end, F({1,2}).
{{1,2},3}
3> G = fun(<<A:8,B:8>> = <<C:16>>) -> {A, B, C} end, G(<<42,43>>).
{42,43,10795}
The match operator is allowed everywhere an expression is allowed. It is used
to match the value of an expression to a pattern. If multiple match operators
are applied in sequence, they will be evaluated from right to left.
Examples:
1> M = #{key => key2, key2 => value}.
#{key => key2,key2 => value}
2> f(Key), #{Key := Value} = #{key := Key} = M, Value.
value
3> f(Key), #{Key := Value} = (#{key := Key} = M), Value.
value
4> f(Key), (#{Key := Value} = #{key := Key}) = M, Value.
* 1:12: variable 'Key' is unbound
5> <<X:Y>> = begin Y = 8, <<42:8>> end, X.
42
The expression at prompt 2> first matches the value of variable M against
pattern #{key := Key}, binding variable Key. It then matches the value of
M against pattern #{Key := Value} using variable Key as the key, binding
variable Value.
The expression at prompt 3> matches expression (#{key := Key} = M) against
pattern #{Key := Value}. The expression inside the parentheses is evaluated
first. That is, M is matched against #{key := Key}, and then the value of
M is matched against pattern #{Key := Value}. That is the same evaluation
order as in 2; therefore, the parentheses are redundant.
In the expression at prompt 4> the expression M is matched against a pattern
inside parentheses. Since the construct inside the parentheses is a pattern, the
= that separates the two patterns is the compound pattern operator (not the
match operator). The match fails because the two sub patterns are matched at the
same time, and the variable Key is therefore not bound when matching against
pattern #{Key := Value}.
In the expression at prompt 5> the expressions inside the
block expression are evaluated first,
binding variable Y and creating a binary. The binary is then matched against
pattern <<X:Y>> using the value of Y as the size of the segment.

 Function Calls

ExprF(Expr1,...,ExprN)
ExprM:ExprF(Expr1,...,ExprN)
In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of
ExprM and ExprF must be an atom or an expression that evaluates to an atom.
The function is said to be called by using the fully qualified function name.
This is often referred to as a remote or external function call.
Example:
lists:keyfind(Name, 1, List)
In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be
an atom or evaluate to a fun.
If ExprF is an atom, the function is said to be called by using the
implicitly qualified function name. If the function ExprF is locally
defined, it is called. Alternatively, if ExprF is explicitly imported from the
M module, M:ExprF(Expr1,...,ExprN) is called. If ExprF is neither declared
locally nor explicitly imported, ExprF must be the name of an automatically
imported BIF.
Examples:
handle(Msg, State)
spawn(m, init, [])
Examples where ExprF is a fun:
1> Fun1 = fun(X) -> X+1 end,
Fun1(3).
4
2> fun lists:append/2([1,2], [3,4]).
[1,2,3,4]
3>
Notice that when calling a local function, there is a difference between using
the implicitly or fully qualified function name. The latter always refers to the
latest version of the module. See
Compilation and Code Loading and
Function Evaluation.

 Local Function Names Clashing With Auto-Imported BIFs

If a local function has the same name as an auto-imported BIF, the semantics is
that implicitly qualified function calls are directed to the locally defined
function, not to the BIF. To avoid confusion, there is a compiler directive
available, -compile({no_auto_import,[F/A]}), that makes a BIF not being
auto-imported. In certain situations, such a compile-directive is mandatory.
Change
Before Erlang/OTP R14A (ERTS version 5.8), an implicitly qualified function call to a
function having the same name as an auto-imported BIF always resulted in the
BIF being called. In newer versions of the compiler, the local function is
called instead. This is to avoid that future additions to the set of
auto-imported BIFs do not silently change the behavior of old code.
However, to avoid that old (pre R14) code changed its behavior when compiled
with Erlang/OTP version R14A or later, the following restriction applies: If you
override the name of a BIF that was auto-imported in OTP versions prior to R14A
(ERTS version 5.8) and have an implicitly qualified call to that function in
your code, you either need to explicitly remove the auto-import using a compiler
directive, or replace the call with a fully qualified function call. Otherwise
you get a compilation error. See the following example:
-export([length/1,f/1]).

-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported

length([]) ->
 0;
length([H|T]) ->
 1 + length(T). %% Calls the local function length/1

f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
 %% which is allowed in guards
 long.
The same logic applies to explicitly imported functions from other modules, as
to locally defined functions. It is not allowed to both import a function from
another module and have the function declared in the module at the same time:
-export([f/1]).

-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported

-import(mod,[length/1]).

f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
 %% which is allowed in guards

 erlang:length(X); %% Explicit call to erlang:length in body

f(X) ->
 length(X). %% mod:length/1 is called
For auto-imported BIFs added in Erlang/OTP R14A and thereafter, overriding the
name with a local function or explicit import is always allowed. However, if the
-compile({no_auto_import,[F/A]) directive is not used, the compiler issues a
warning whenever the function is called in the module using the implicitly
qualified function name.

 If

if
 GuardSeq1 ->
 Body1;
 ...;
 GuardSeqN ->
 BodyN
end
The branches of an if-expression are scanned sequentially until a guard
sequence GuardSeq that evaluates to true is found. Then the corresponding
Body (a sequence of expressions separated by ,) is evaluated.
The return value of Body is the return value of the if expression.
If no guard sequence is evaluated as true, an if_clause run-time error occurs.
If necessary, the guard expression true can be used in the last branch, as
that guard sequence is always true.
Example:
is_greater_than(X, Y) ->
 if
 X > Y ->
 true;
 true -> % works as an 'else' branch
 false
 end

 Case

case Expr of
 Pattern1 [when GuardSeq1] ->
 Body1;
 ...;
 PatternN [when GuardSeqN] ->
 BodyN
end
The expression Expr is evaluated and the patterns Pattern are sequentially
matched against the result. If a match succeeds and the optional guard sequence
GuardSeq is true, the corresponding Body is evaluated.
The return value of Body is the return value of the case expression.
If there is no matching pattern with a true guard sequence, a case_clause
run-time error occurs.
Example:
is_valid_signal(Signal) ->
 case Signal of
 {signal, _What, _From, _To} ->
 true;
 {signal, _What, _To} ->
 true;
 _Else ->
 false
 end.

 Maybe

Change
The maybe feature was introduced
in Erlang/OTP 25. Starting from Erlang/OTP 27 is is enabled by default.
maybe
 Expr1,
 ...,
 ExprN
end
The expressions in a maybe block are evaluated sequentially. If all
expressions are evaluated successfully, the return value of the maybe block is
ExprN. However, execution can be short-circuited by a conditional match
expression:
Expr1 ?= Expr2
?= is called the conditional match operator. It is only allowed to be used at
the top-level of a maybe block. It matches the pattern Expr1 against
Expr2. If the matching succeeds, any unbound variable in the pattern becomes
bound. If the expression is the last expression in the maybe block, it also
returns the value of Expr2. If the matching is unsuccessful, the rest of the
expressions in the maybe block are skipped and the return value of the maybe
block is Expr2.
None of the variables bound in a maybe block must be used in the code that
follows the block.
Here is an example:
maybe
 {ok, A} ?= a(),
 true = A >= 0,
 {ok, B} ?= b(),
 A + B
end
Let us first assume that a() returns {ok,42} and b() returns {ok,58}.
With those return values, all of the match operators will succeed, and the
return value of the maybe block is A + B, which is equal to 42 + 58 = 100.
Now let us assume that a() returns error. The conditional match operator in
{ok, A} ?= a() fails to match, and the return value of the maybe block is
the value of the expression that failed to match, namely error. Similarly, if
b() returns wrong, the return value of the maybe block is wrong.
Finally, let us assume that a() returns {ok,-1}. Because true = A >= 0 uses
the match operator =, a {badmatch,false} run-time error occurs when the
expression fails to match the pattern.
The example can be written in a less succient way using nested case expressions:
case a() of
 {ok, A} ->
 true = A >= 0,
 case b() of
 {ok, B} ->
 A + B;
 Other1 ->
 Other1
 end;
 Other2 ->
 Other2
end
The maybe block can be augmented with else clauses:
maybe
 Expr1,
 ...,
 ExprN
else
 Pattern1 [when GuardSeq1] ->
 Body1;
 ...;
 PatternN [when GuardSeqN] ->
 BodyN
end
If a conditional match operator fails, the failed expression is matched against
the patterns in all clauses between the else and end keywords. If a match
succeeds and the optional guard sequence GuardSeq is true, the corresponding
Body is evaluated. The value returned from the body is the return value of the
maybe block.
If there is no matching pattern with a true guard sequence, an else_clause
run-time error occurs.
None of the variables bound in a maybe block must be used in the else
clauses. None of the variables bound in the else clauses must be used in the
code that follows the maybe block.
Here is the previous example augmented with else clauses:
maybe
 {ok, A} ?= a(),
 true = A >= 0,
 {ok, B} ?= b(),
 A + B
else
 error -> error;
 wrong -> error
end
The else clauses translate the failing value from the conditional match
operators to the value error. If the failing value is not one of the
recognized values, a else_clause run-time error occurs.

 Send

Expr1 ! Expr2
Sends the value of Expr2 as a message to the process specified by Expr1. The
value of Expr2 is also the return value of the expression.
Expr1 must evaluate to a pid, an alias (reference), a port, a registered name
(atom), or a tuple {Name,Node}. Name is an atom and Node is a node name,
also an atom.
	If Expr1 evaluates to a name, but this name is not registered, a badarg
run-time error occurs.
	Sending a message to a reference never fails, even if the reference is no
longer (or never was) an alias.
	Sending a message to a pid never fails, even if the pid identifies a
non-existing process.
	Distributed message sending, that is, if Expr1 evaluates to a tuple
{Name,Node} (or a pid located at another node), also never fails.

 Receive

receive
 Pattern1 [when GuardSeq1] ->
 Body1;
 ...;
 PatternN [when GuardSeqN] ->
 BodyN
end
Fetches a received message present in the message queue of the process. The
first message in the message queue is matched sequentially against the patterns
from top to bottom. If no match was found, the matching sequence is repeated for
the second message in the queue, and so on. Messages are queued in the
order they were received. If a match
succeeds, that is, if the Pattern matches and the optional guard sequence
GuardSeq is true, then the message is removed from the message queue and the
corresponding Body is evaluated. All other messages in the message queue
remain unchanged.
The return value of Body is the return value of the receive expression.
receive never fails. The execution is suspended, possibly indefinitely, until
a message arrives that matches one of the patterns and with a true guard
sequence.
Example:
wait_for_onhook() ->
 receive
 onhook ->
 disconnect(),
 idle();
 {connect, B} ->
 B ! {busy, self()},
 wait_for_onhook()
 end.
The receive expression can be augmented with a timeout:
receive
 Pattern1 [when GuardSeq1] ->
 Body1;
 ...;
 PatternN [when GuardSeqN] ->
 BodyN
after
 ExprT ->
 BodyT
end
receive...after works exactly as receive, except that if no matching message
has arrived within ExprT milliseconds, then BodyT is evaluated instead. The
return value of BodyT then becomes the return value of the receive...after
expression. ExprT is to evaluate to an integer, or the atom infinity. The
allowed integer range is from 0 to 4294967295, that is, the longest possible
timeout is almost 50 days. With a zero value the timeout occurs immediately if
there is no matching message in the message queue.
The atom infinity will make the process wait indefinitely for a matching
message. This is the same as not using a timeout. It can be useful for timeout
values that are calculated at runtime.
Example:
wait_for_onhook() ->
 receive
 onhook ->
 disconnect(),
 idle();
 {connect, B} ->
 B ! {busy, self()},
 wait_for_onhook()
 after
 60000 ->
 disconnect(),
 error()
 end.
It is legal to use a receive...after expression with no branches:
receive
after
 ExprT ->
 BodyT
end
This construction does not consume any messages, only suspends execution in the
process for ExprT milliseconds. This can be used to implement simple timers.
Example:
timer() ->
 spawn(m, timer, [self()]).

timer(Pid) ->
 receive
 after
 5000 ->
 Pid ! timeout
 end.
For more information on timers in Erlang in general, see the
Timers section of the
Time and Time Correction in Erlang
ERTS User's guide.

 Term Comparisons

Expr1 op Expr2
	op	Description
	==	Equal to
	/=	Not equal to
	=<	Less than or equal to
	<	Less than
	>=	Greater than or equal to
	>	Greater than
	=:=	Term equivalence
	=/=	Term non-equivalence

Table: Term Comparison Operators.
The arguments can be of different data types. The following order is defined:
number < atom < reference < fun < port < pid < tuple < map < nil < list < bit string
nil in the previous expression represents the empty list ([]), which is
regarded as a separate type from list/0. That is why nil < list.
Lists are compared element by element. Tuples are ordered by size, two tuples
with the same size are compared element by element.
Bit strings are compared bit by bit. If one bit string is a prefix of the other,
the shorter bit string is considered smaller.
Maps are ordered by size, two maps with the same size are compared by keys in
ascending term order and then by values in key order. In maps key order integers
types are considered less than floats types.
Atoms are compared using their string value, codepoint by codepoint.
When comparing an integer to a float, the term with the lesser precision is
converted into the type of the other term, unless the operator is one of =:=
or =/=. A float is more precise than an integer until all significant figures
of the float are to the left of the decimal point. This happens when the float
is larger/smaller than +/-9007199254740992.0. The conversion strategy is changed
depending on the size of the float because otherwise comparison of large floats
and integers would lose their transitivity.
The term equivalence operators, =:= and =/=, return whether two terms are
indistinguishable. While the other operators consider the same numbers equal
even when their types differ (1 == 1.0 is true), the term equivalence
operators return whether or not there exists a way to tell the arguments apart.
For example, while the terms 0 and 0.0 represent the same number, we can
tell them apart by using the is_integer/1 function. Hence,
=:= and =/= consider them different.
Furthermore, the terms 0.0 and -0.0 also represent the same number, but
they yield different results when converted to string form through
float_to_list/1: when given the former it returns a
string without a sign, and when given the latter it returns a string with a
sign. Therefore, =:= and =/= consider them different.
The term equivalence operators are useful when reasoning about terms as opaque
values, for example in associative containers or memoized functions where using
the equal-to operator (==) risks producing incorrect results as a consequence
of mixing up numbers of different types.
Term comparison operators return the Boolean value of the expression, true or
false.
Examples:
1> 1 == 1.0.
true
2> 1 =:= 1.0.
false
3> 0 =:= 0.0.
false
4> 0.0 =:= -0.0.
false
5> 0.0 =:= +0.0.
true
6> 1 > a.
false
7> #{c => 3} > #{a => 1, b => 2}.
false
8> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}.
true
9> <<2:2>> < <<128>>.
true
10> <<3:2>> < <<128>>.
false
Note
Prior to OTP 27, the term equivalence operators considered 0.0
and -0.0 to be the same term.
This was changed in OTP 27 but legacy code may have expected them to be
considered the same. To help users catch errors that may arise from an
upgrade, the compiler raises a warning when 0.0 is pattern-matched or used
in a term equivalence test.
If you need to match 0.0 specifically, the warning can be silenced by
writing +0.0 instead, which produces the same term but makes the compiler
interpret the match as being done on purpose.

 Arithmetic Expressions

op Expr
Expr1 op Expr2
	Operator	Description	Argument Type
	+	Unary +	Number
	-	Negation (unary -)	Number
	+	Addition	Number
	-	Subtraction	Number
	*	Multiplication	Number
	/	Floating point division	Number
	bnot	Unary bitwise NOT	Integer
	div	Integer division	Integer
	rem	Integer remainder of X/Y	Integer
	band	Bitwise AND	Integer
	bor	Bitwise OR	Integer
	bxor	Bitwise XOR	Integer
	bsl	Bitshift left	Integer
	bsr	Arithmetic bitshift right	Integer

Table: Arithmetic Operators.
Examples:
1> +1.
1
2> -1.
-1
3> 1+1.
2
4> 4/2.
2.0
5> 5 div 2.
2
6> 5 rem 2.
1
7> 2#10 band 2#01.
0
8> 2#10 bor 2#01.
3
9> a + 10.
** exception error: an error occurred when evaluating an arithmetic expression
 in operator +/2
 called as a + 10
10> 1 bsl (1 bsl 64).
** exception error: a system limit has been reached
 in operator bsl/2
 called as 1 bsl 18446744073709551616

 Boolean Expressions

op Expr
Expr1 op Expr2
	Operator	Description
	not	Unary logical NOT
	and	Logical AND
	or	Logical OR
	xor	Logical XOR

Table: Logical Operators.
Examples:
1> not true.
false
2> true and false.
false
3> true xor false.
true
4> true or garbage.
** exception error: bad argument
 in operator or/2
 called as true or garbage

 Short-Circuit Expressions

Expr1 orelse Expr2
Expr1 andalso Expr2
Expr2 is evaluated only if necessary. That is, Expr2 is evaluated only if:
	Expr1 evaluates to false in an orelse expression.

or
	Expr1 evaluates to true in an andalso expression.

Returns either the value of Expr1 (that is, true or false) or the value of
Expr2 (if Expr2 is evaluated).
Example 1:
case A >= -1.0 andalso math:sqrt(A+1) > B of
This works even if A is less than -1.0, since in that case, math:sqrt/1 is
never evaluated.
Example 2:
OnlyOne = is_atom(L) orelse
 (is_list(L) andalso length(L) == 1),
Expr2 is not required to evaluate to a Boolean value. Because of that,
andalso and orelse are tail-recursive.
Example 3 (tail-recursive function):
all(Pred, [Hd|Tail]) ->
 Pred(Hd) andalso all(Pred, Tail);
all(_, []) ->
 true.
Change
Before Erlang/OTP R13A, Expr2 was required to evaluate to a Boolean value,
and as consequence, andalso and orelse were not tail-recursive.

 List Operations

Expr1 ++ Expr2
Expr1 -- Expr2
The list concatenation operator ++ appends its second argument to its first
and returns the resulting list.
The list subtraction operator -- produces a list that is a copy of the first
argument. The procedure is as follows: for each element in the second argument,
the first occurrence of this element (if any) is removed.
Example:
1> [1,2,3] ++ [4,5].
[1,2,3,4,5]
2> [1,2,3,2,1,2] -- [2,1,2].
[3,1,2]

 Map Expressions

 Creating Maps

Constructing a new map is done by letting an expression K be associated with
another expression V:
#{K => V}
New maps can include multiple associations at construction by listing every
association:
#{K1 => V1, ..., Kn => Vn}
An empty map is constructed by not associating any terms with each other:
#{}
All keys and values in the map are terms. Any expression is first evaluated and
then the resulting terms are used as key and value respectively.
Keys and values are separated by the => arrow and associations are separated
by a comma (,).
Examples:
M0 = #{}, % empty map
M1 = #{a => <<"hello">>}, % single association with literals
M2 = #{1 => 2, b => b}, % multiple associations with literals
M3 = #{k => {A,B}}, % single association with variables
M4 = #{{"w", 1} => f()}. % compound key associated with an evaluated expression
Here, A and B are any expressions and M0 through M4 are the resulting
map terms.
If two matching keys are declared, the latter key takes precedence.
Example:
1> #{1 => a, 1 => b}.
#{1 => b }
2> #{1.0 => a, 1 => b}.
#{1 => b, 1.0 => a}
The order in which the expressions constructing the keys (and their associated
values) are evaluated is not defined. The syntactic order of the key-value pairs
in the construction is of no relevance, except in the recently mentioned case of
two matching keys.

 Updating Maps

Updating a map has a similar syntax as constructing it.
An expression defining the map to be updated is put in front of the expression
defining the keys to be updated and their respective values:
M#{K => V}
Here M is a term of type map and K and V are any expression.
If key K does not match any existing key in the map, a new association is
created from key K to value V.
If key K matches an existing key in map M, its associated value is replaced
by the new value V. In both cases, the evaluated map expression returns a new
map.
If M is not of type map, an exception of type badmap is raised.
To only update an existing value, the following syntax is used:
M#{K := V}
Here M is a term of type map, V is an expression and K is an expression
that evaluates to an existing key in M.
If key K does not match any existing keys in map M, an exception of type
badkey is raised at runtime. If a matching key K is present in map M,
its associated value is replaced by the new value V, and the evaluated map
expression returns a new map.
If M is not of type map, an exception of type badmap is raised.
Examples:
M0 = #{},
M1 = M0#{a => 0},
M2 = M1#{a => 1, b => 2},
M3 = M2#{"function" => fun() -> f() end},
M4 = M3#{a := 2, b := 3}. % 'a' and 'b' was added in `M1` and `M2`.
Here M0 is any map. It follows that M1 through M4 are maps as well.
More examples:
1> M = #{1 => a}.
#{1 => a }
2> M#{1.0 => b}.
#{1 => a, 1.0 => b}.
3> M#{1 := b}.
#{1 => b}
4> M#{1.0 := b}.
** exception error: bad argument
As in construction, the order in which the key and value expressions are
evaluated is not defined. The syntactic order of the key-value pairs in the
update is of no relevance, except in the case where two keys match. In that
case, the latter value is used.

 Maps in Patterns

Matching of key-value associations from maps is done as follows:
#{K := V} = M
Here M is any map. The key K must be a
guard expression, with all variables already
bound. V can be any pattern with either bound or unbound variables.
If the variable V is unbound, it becomes bound to the value associated with
the key K, which must exist in the map M. If the variable V is bound, it
must match the value associated with K in M.
Change
Before Erlang/OTP 23, the expression defining the key K was restricted to be
either a single variable or a literal.
Example:
1> M = #{"tuple" => {1,2}}.
#{"tuple" => {1,2}}
2> #{"tuple" := {1,B}} = M.
#{"tuple" => {1,2}}
3> B.
2.
This binds variable B to integer 2.
Similarly, multiple values from the map can be matched:
#{K1 := V1, ..., Kn := Vn} = M
Here keys K1 through Kn are any expressions with literals or bound
variables. If all key expressions evaluate successfully and all keys
exist in map M, all variables in V1 .. Vn is matched to the
associated values of their respective keys.
If the matching conditions are not met the match fails.
Note that when matching a map, only the := operator (not the =>) is allowed
as a delimiter for the associations.
The order in which keys are declared in matching has no relevance.
Duplicate keys are allowed in matching and match each pattern associated to the
keys:
#{K := V1, K := V2} = M
The empty map literal (#{}) matches any map when used as a pattern:
#{} = Expr
This expression matches if the expression Expr is of type map, otherwise it
fails with an exception badmatch.
Here the key to be retrieved is constructed from an expression:
#{{tag,length(List)} := V} = Map
List must be an already bound variable.
Matching Syntax
Matching of literals as keys are allowed in function heads:
%% only start if not_started
handle_call(start, From, #{state := not_started} = S) ->
...
 {reply, ok, S#{state := start}};

%% only change if started
handle_call(change, From, #{state := start} = S) ->
...
 {reply, ok, S#{state := changed}};

 Maps in Guards

Maps are allowed in guards as long as all subexpressions are valid guard
expressions.
The following guard BIFs handle maps:
	is_map/1 in the erlang module
	is_map_key/2 in the erlang module
	map_get/2 in the erlang module
	map_size/1 in the erlang module

 Bit Syntax Expressions

The bit syntax operates on bit strings. A bit string is a sequence of bits
ordered from the most significant bit to the least significant bit.
<<>> % The empty bit string, zero length
<<E1>>
<<E1,...,En>>
Each element Ei specifies a segment of the bit string. The segments are
ordered left to right from the most significant bit to the least significant bit
of the bit string.
Each segment specification Ei is a value, whose default type is integer,
followed by an optional size expression and an optional type specifier list.
Ei = Value |
 Value:Size |
 Value/TypeSpecifierList |
 Value:Size/TypeSpecifierList
When used in a bit string construction, Value is an expression that is to
evaluate to an integer, float, or bit string. If the expression is not a single
literal or variable, it is to be enclosed in parentheses.
When used in a bit string matching, Value must be a variable, or an integer,
float, or string.
Notice that, for example, using a string literal as in <<"abc">> is syntactic
sugar for <<$a,$b,$c>>.
When used in a bit string construction, Size is an expression that is to
evaluate to an integer.
When used in a bit string matching, Size must be a
guard expression that evaluates to an
integer. All variables in the guard expression must be already bound.
Change
Before Erlang/OTP 23, Size was restricted to be an integer or a variable
bound to an integer.
The value of Size specifies the size of the segment in units (see below). The
default value depends on the type (see below):
	For integer it is 8.
	For float it is 64.
	For binary and bitstring it is the whole binary or bit string.

In matching, the default value for a binary or bit string segment is only valid
for the last element. All other bit string or binary elements in the matching
must have a size specification.

Binaries
A bit string with a length that is a multiple of 8 bits is known as a binary,
which is the most common and useful type of bit string.
A binary has a canonical representation in memory. Here follows a sequence of
bytes where each byte's value is its sequence number:
<<1, 2, 3, 4, 5, 6, 7, 8, 9, 10>>
Bit strings are a later generalization of binaries, so many texts and much
information about binaries apply just as well for bit strings.
Example:
1> <<A/binary, B/binary>> = <<"abcde">>.
* 1:3: a binary field without size is only allowed at the end of a binary pattern
2> <<A:3/binary, B/binary>> = <<"abcde">>.
<<"abcde">>
3> A.
<<"abc">>
4> B.
<<"de">>
For the utf8, utf16, and utf32 types, Size must not be given. The size
of the segment is implicitly determined by the type and value itself.
TypeSpecifierList is a list of type specifiers, in any order, separated by
hyphens (-). Default values are used for any omitted type specifiers.
	Type= integer | float | binary | bytes | bitstring | bits |
utf8 | utf16 | utf32 - The default is integer. bytes is a
shorthand for binary and bits is a shorthand for bitstring. See below
for more information about the utf types.

	Signedness= signed | unsigned - Only matters for matching and when
the type is integer. The default is unsigned.

	Endianness= big | little | native - Specifies byte level (octet
level) endianness (byte order). Native-endian means that the endianness is
resolved at load time to be either big-endian or little-endian, depending on
what is native for the CPU that the Erlang machine is run on. Endianness only
matters when the Type is either integer, utf16, utf32, or float. The
default is big.
<<16#1234:16/little>> = <<16#3412:16>> = <<16#34:8, 16#12:8>>

	Unit= unit:IntegerLiteral - The allowed range is 1 through 256.
Defaults to 1 for integer, float, and bitstring, and to 8 for binary.
For types bitstring, bits, and bytes, it is not allowed to specify a
unit value different from the default value. No unit specifier must be given
for the types utf8, utf16, and utf32.

 Integer segments

The value of Size multiplied with the unit gives the size of the segment in
bits.
When constructing bit strings, if the size N of an integer segment is too
small to contain the given integer, the most significant bits of the integer are
silently discarded and only the N least significant bits are put into the bit
string. For example, <<16#ff:4>> will result in the bit string <<15:4>>.

 Float segments

The value of Size multiplied with the unit gives the size of the segment in
bits. The size of a float segment in bits must be one of 16, 32, or 64.
When constructing bit strings, if the size of a float segment is too small to
contain the representation of the given float value, an exception is raised.
When matching bit strings, matching of float segments fails if the bits of the
segment does not contain the representation of a finite floating point value.

 Binary segments

In this section, the phrase "binary segment" refers to any one of the segment
types binary, bitstring, bytes, and bits.
See also the paragraphs about Binaries.
When constructing binaries and no size is specified for a binary segment, the
entire binary value is interpolated into the binary being constructed. However,
the size in bits of the binary being interpolated must be evenly divisible by
the unit value for the segment; otherwise an exception is raised.
For example, the following examples all succeed:
1> <<(<<"abc">>)/bitstring>>.
<<"abc">>
2> <<(<<"abc">>)/binary-unit:1>>.
<<"abc">>
3> <<(<<"abc">>)/binary>>.
<<"abc">>
The first two examples have a unit value of 1 for the segment, while the third
segment has a unit value of 8.
Attempting to interpolate a bit string of size 1 into a binary segment with unit
8 (the default unit for binary) fails as shown in this example:
1> <<(<<1:1>>)/binary>>.
** exception error: bad argument
For the construction to succeed, the unit value of the segment must be 1:
2> <<(<<1:1>>)/bitstring>>.
<<1:1>>
3> <<(<<1:1>>)/binary-unit:1>>.
<<1:1>>
Similarly, when matching a binary segment with no size specified, the match
succeeds if and only if the size in bits of the rest of the binary is evenly
divisible by the unit value:
1> <<_/binary-unit:16>> = <<"">>.
<<>>
2> <<_/binary-unit:16>> = <<"a">>.
** exception error: no match of right hand side value <<"a">>
3> <<_/binary-unit:16>> = <<"ab">>.
<<"ab">>
4> <<_/binary-unit:16>> = <<"abc">>.
** exception error: no match of right hand side value <<"abc">>
5> <<_/binary-unit:16>> = <<"abcd">>.
<<"abcd">>
When a size is explicitly specified for a binary segment, the segment size in
bits is the value of Size multiplied by the default or explicit unit value.
When constructing binaries, the size of the binary being interpolated into the
constructed binary must be at least as large as the size of the binary segment.
Examples:
1> <<(<<"abc">>):2/binary>>.
<<"ab">>
2> <<(<<"a">>):2/binary>>.
** exception error: construction of binary failed
 *** segment 1 of type 'binary': the value <<"a">> is shorter than the size of the segment

 Unicode segments

The types utf8, utf16, and utf32 specifies encoding/decoding of the
Unicode Transformation Formats UTF-8,
UTF-16, and
UTF-32, respectively.
When constructing a segment of a utf type, Value must be an integer in the
range 0 through 16#D7FF or 16#E000 through 16#10FFFF. Construction fails with a
badarg exception if Value is outside the allowed ranges. The sizes of the
encoded values are as follows:
	For utf8, Value is encoded in 1-4 bytes.
	For utf16, Value is encoded in 2 or 4 bytes.
	For utf32, Value is encoded in 4 bytes.

When constructing, a literal string can be given followed by one of the UTF
types, for example: <<"abc"/utf8>> which is syntactic sugar for
<<$a/utf8,$b/utf8,$c/utf8>>.
A successful match of a segment of a utf type, results in an integer in the
range 0 through 16#D7FF or 16#E000 through 16#10FFFF. The match fails if the
returned value falls outside those ranges.
A segment of type utf8 matches 1-4 bytes in the bit string, if the bit string
at the match position contains a valid UTF-8 sequence. (See RFC-3629 or the
Unicode standard.)
A segment of type utf16 can match 2 or 4 bytes in the bit string. The match
fails if the bit string at the match position does not contain a legal UTF-16
encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)
A segment of type utf32 can match 4 bytes in the bit string in the same way as
an integer segment matches 32 bits. The match fails if the resulting integer
is outside the legal ranges previously mentioned.
Examples:
1> Bin1 = <<1,17,42>>.
<<1,17,42>>
2> Bin2 = <<"abc">>.
<<97,98,99>>

3> Bin3 = <<1,17,42:16>>.
<<1,17,0,42>>
4> <<A,B,C:16>> = <<1,17,42:16>>.
<<1,17,0,42>>
5> C.
42
6> <<D:16,E,F>> = <<1,17,42:16>>.
<<1,17,0,42>>
7> D.
273
8> F.
42
9> <<G,H/binary>> = <<1,17,42:16>>.
<<1,17,0,42>>
10> H.
<<17,0,42>>
11> <<G,J/bitstring>> = <<1,17,42:12>>.
<<1,17,2,10:4>>
12> J.
<<17,2,10:4>>

13> <<1024/utf8>>.
<<208,128>>

14> <<1:1,0:7>>.
<<128>>
15> <<16#123:12/little>> = <<16#231:12>> = <<2:4, 3:4, 1:4>>.
<<35,1:4>>
Notice that bit string patterns cannot be nested.
Notice also that "B=<<1>>" is interpreted as "B =< <1>>" which is a syntax
error. The correct way is to write a space after =: "B = <<1>>.
More examples are provided in Programming Examples.

 Fun Expressions

fun
 [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
 Body1;
 ...;
 [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
 BodyK
end
A fun expression begins with the keyword fun and ends with the keyword end.
Between them is to be a function declaration, similar to a
regular function declaration,
except that the function name is optional and is to be a variable, if any.
Variables in a fun head shadow the function name and both shadow variables in
the function clause surrounding the fun expression. Variables bound in a fun
body are local to the fun body.
The return value of the expression is the resulting fun.
Examples:
1> Fun1 = fun (X) -> X+1 end.
#Fun<erl_eval.6.39074546>
2> Fun1(2).
3
3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
#Fun<erl_eval.6.39074546>
4> Fun2(7).
gt
5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
#Fun<erl_eval.6.39074546>
6> Fun3(4).
24
The following fun expressions are also allowed:
fun Name/Arity
fun Module:Name/Arity
In Name/Arity, Name is an atom and Arity is an integer. Name/Arity must
specify an existing local function. The expression is syntactic sugar for:
fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end
In Module:Name/Arity, Module, and Name are atoms and Arity is an
integer. Module, Name, and Arity can also be variables. A fun defined in
this way refers to the function Name with arity Arity in the latest
version of module Module. A fun defined in this way is not dependent on the
code for the module in which it is defined.
Change
Before Erlang/OTP R15, Module, Name, and Arity were not allowed to be
variables.
More examples are provided in Programming Examples.

 Catch and Throw

catch Expr
Returns the value of Expr unless an exception is raised during the evaluation. In
that case, the exception is caught. The return value depends on the class of the
exception:
	error (a run-time error or the code called error(Term)) -
{'EXIT',{Reason,Stack}} is returned.

	exit (the code called exit(Term)) - {'EXIT',Term} is returned.

	throw (the code called throw(Term)): Term is returned.

Reason depends on the type of error that occurred, and Stack is the stack of
recent function calls, see Exit Reasons.
Examples:
1> catch 1+2.
3
2> catch 1+a.
{'EXIT',{badarith,[...]}}
The BIF throw(Any) can be used for non-local return from a
function. It must be evaluated within a catch, which returns the value Any.
Example:
3> catch throw(hello).
hello
If throw/1 is not evaluated within a catch, a nocatch run-time
error occurs.
Change
Before Erlang/OTP 24, the catch operator had the lowest precedence, making
it necessary to add parentheses when combining it with the match operator:
1> A = (catch 42).
42
2> A.
42
Starting from Erlang/OTP 24, the parentheses can be omitted:
1> A = catch 42.
42
2> A.
42

 Try

try Exprs
catch
 Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
 ExceptionBody1;
 ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
 ExceptionBodyN
end
This is an enhancement of catch. It gives the
possibility to:
	Distinguish between different exception classes.
	Choose to handle only the desired ones.
	Passing the others on to an enclosing try or catch, or to default error
handling.

Notice that although the keyword catch is used in the try expression, there
is not a catch expression within the try expression.
It returns the value of Exprs (a sequence of expressions Expr1, ..., ExprN)
unless an exception occurs during the evaluation. In that case the exception is
caught and the patterns ExceptionPattern with the right exception class
Class are sequentially matched against the caught exception. If a match
succeeds and the optional guard sequence ExceptionGuardSeq is true, the
corresponding ExceptionBody is evaluated to become the return value.
Stacktrace, if specified, must be the name of a variable (not a pattern). The
stack trace is bound to the variable when the corresponding ExceptionPattern
matches.
If an exception occurs during evaluation of Exprs but there is no matching
ExceptionPattern of the right Class with a true guard sequence, the
exception is passed on as if Exprs had not been enclosed in a try
expression.
If an exception occurs during evaluation of ExceptionBody, it is not caught.
It is allowed to omit Class and Stacktrace. An omitted Class is shorthand
for throw:
try Exprs
catch
 ExceptionPattern1 [when ExceptionGuardSeq1] ->
 ExceptionBody1;
 ExceptionPatternN [when ExceptionGuardSeqN] ->
 ExceptionBodyN
end
The try expression can have an of section:
try Exprs of
 Pattern1 [when GuardSeq1] ->
 Body1;
 ...;
 PatternN [when GuardSeqN] ->
 BodyN
catch
 Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
 ExceptionBody1;
 ...;
 ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
 ExceptionBodyN
end
If the evaluation of Exprs succeeds without an exception, the patterns
Pattern are sequentially matched against the result in the same way as for a
case expression, except that if the matching fails, a
try_clause run-time error occurs instead of a case_clause.
Only exceptions occurring during the evaluation of Exprs can be caught by the
catch section. Exceptions occurring in a Body or due to a failed match are
not caught.
The try expression can also be augmented with an after section, intended to
be used for cleanup with side effects:
try Exprs of
 Pattern1 [when GuardSeq1] ->
 Body1;
 ...;
 PatternN [when GuardSeqN] ->
 BodyN
catch
 Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
 ExceptionBody1;
 ...;
 ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
 ExceptionBodyN
after
 AfterBody
end
AfterBody is evaluated after either Body or ExceptionBody, no matter which
one. The evaluated value of AfterBody is lost; the return value of the try
expression is the same with an after section as without.
Even if an exception occurs during evaluation of Body or ExceptionBody,
AfterBody is evaluated. In this case the exception is passed on after
AfterBody has been evaluated, so the exception from the try expression is
the same with an after section as without.
If an exception occurs during evaluation of AfterBody itself, it is not
caught. So if AfterBody is evaluated after an exception in Exprs, Body, or
ExceptionBody, that exception is lost and masked by the exception in
AfterBody.
The of, catch, and after sections are all optional, as long as there is at
least a catch or an after section. So the following are valid try
expressions:
try Exprs of
 Pattern when GuardSeq ->
 Body
after
 AfterBody
end

try Exprs
catch
 ExpressionPattern ->
 ExpressionBody
after
 AfterBody
end

try Exprs after AfterBody end
Next is an example of using after. This closes the file, even in the event of
exceptions in file:read/2 or in binary_to_term/1. The
exceptions are the same as without the try...after...end expression:
termize_file(Name) ->
 {ok,F} = file:open(Name, [read,binary]),
 try
 {ok,Bin} = file:read(F, 1024*1024),
 binary_to_term(Bin)
 after
 file:close(F)
 end.
Next is an example of using try to emulate catch Expr:
try Expr
catch
 throw:Term -> Term;
 exit:Reason -> {'EXIT',Reason};
 error:Reason:Stk -> {'EXIT',{Reason,Stk}}
end
Variables bound in the various parts of these expressions have different scopes.
Variables bound just after the try keyword are:
	bound in the of section
	unsafe in both the catch and after sections, as well as after the whole
construct

Variables bound in of section are:
	unbound in the catch section
	unsafe in both the after section, as well as after the whole construct

Variables bound in the catch section are unsafe in the after section, as
well as after the whole construct.
Variables bound in the after section are unsafe after the whole construct.

 Parenthesized Expressions

(Expr)
Parenthesized expressions are useful to override
operator precedences, for example, in arithmetic
expressions:
1> 1 + 2 * 3.
7
2> (1 + 2) * 3.
9

 Block Expressions

begin
 Expr1,
 ...,
 ExprN
end
Block expressions provide a way to group a sequence of expressions, similar to a
clause body. The return value is the value of the last expression ExprN.

 Comprehensions

Comprehensions provide a succinct notation for iterating over one or more terms
and constructing a new term. Comprehensions come in three different flavors,
depending on the type of term they build.
List comprehensions construct lists. They have the following syntax:
[Expr || Qualifier1, . . ., QualifierN]
Here, Expr is an arbitrary expression, and each Qualifier is either a
generator or a filter.
Bit string comprehensions construct bit strings or binaries. They have the
following syntax:
<< BitStringExpr || Qualifier1, . . ., QualifierN >>
BitStringExpr is an expression that evaluates to a bit string. If
BitStringExpr is a function call, it must be enclosed in parentheses. Each
Qualifier is either a generator or a filter.
Map comprehensions construct maps. They have the following syntax:
#{KeyExpr => ValueExpr || Qualifier1, . . ., QualifierN}
Here, KeyExpr and ValueExpr are arbitrary expressions, and each Qualifier
is either a generator or a filter.
Change
Map comprehensions and map generators were introduced in Erlang/OTP 26.
There are three kinds of generators.
A list generator has the following syntax:
Pattern <- ListExpr
where ListExpr is an expression that evaluates to a list of terms.
A bit string generator has the following syntax:
BitstringPattern <= BitStringExpr
where BitStringExpr is an expression that evaluates to a bit string.
A map generator has the following syntax:
KeyPattern := ValuePattern <- MapExpression
where MapExpr is an expression that evaluates to a map, or a map iterator
obtained by calling maps:iterator/1 or maps:iterator/2.
A filter is an expression that evaluates to true or false.
The variables in the generator patterns shadow previously bound variables,
including variables bound in a previous generator pattern.
Variables bound in a generator expression are not visible outside the
expression:
1> [{E,L} || E <- L=[1,2,3]].
* 1:5: variable 'L' is unbound
A list comprehension returns a list, where the list elements are the result
of evaluating Expr for each combination of generator elements for which all
filters are true.
A bit string comprehension returns a bit string, which is created by
concatenating the results of evaluating BitStringExpr for each combination of
bit string generator elements for which all filters are true.
A map comprehension returns a map, where the map elements are the result of
evaluating KeyExpr and ValueExpr for each combination of generator elements
for which all filters are true. If the key expressions are not unique, the last
occurrence is stored in the map.
Examples:
Multiplying each element in a list by two:
1> [X*2 || X <- [1,2,3]].
[2,4,6]
Multiplying each byte in a binary by two, returning a list:
1> [X*2 || <<X>> <= <<1,2,3>>].
[2,4,6]
Multiplying each byte in a binary by two:
1> << <<(X*2)>> || <<X>> <= <<1,2,3>> >>.
<<2,4,6>>
Multiplying each element in a list by two, returning a binary:
1> << <<(X*2)>> || X <- [1,2,3] >>.
<<2,4,6>>
Creating a mapping from an integer to its square:
1> #{X => X*X || X <- [1,2,3]}.
#{1 => 1,2 => 4,3 => 9}
Multiplying the value of each element in a map by two:
1> #{K => 2*V || K := V <- #{a => 1,b => 2,c => 3}}.
#{a => 2,b => 4,c => 6}
Filtering a list, keeping odd numbers:
1> [X || X <- [1,2,3,4,5], X rem 2 =:= 1].
[1,3,5]
Filtering a list, keeping only elements that match:
1> [X || {_,_}=X <- [{a,b}, [a], {x,y,z}, {1,2}]].
[{a,b},{1,2}]
Combining elements from two list generators:
1> [{P,Q} || P <- [a,b,c], Q <- [1,2]].
[{a,1},{a,2},{b,1},{b,2},{c,1},{c,2}]
More examples are provided in
Programming Examples.
When there are no generators, a comprehension returns either a term constructed
from a single element (the result of evaluating Expr) if all filters are true,
or a term constructed from no elements (that is, [] for list comprehension,
<<>> for a bit string comprehension, and #{} for a map comprehension).
Example:
1> [2 || is_integer(2)].
[2]
2> [x || is_integer(x)].
[]
What happens when the filter expression does not evaluate to a boolean value
depends on the expression:
	If the expression is a guard expression,
failure to evaluate or evaluating to a non-boolean value is equivalent to
evaluating to false.
	If the expression is not a guard expression and evaluates to a non-Boolean
value Val, an exception {bad_filter, Val} is triggered at runtime. If the
evaluation of the expression raises an exception, it is not caught by the
comprehension.

Examples (using a guard expression as filter):
1> List = [1,2,a,b,c,3,4].
[1,2,a,b,c,3,4]
2> [E || E <- List, E rem 2].
[]
3> [E || E <- List, E rem 2 =:= 0].
[2,4]
Examples (using a non-guard expression as filter):
1> List = [1,2,a,b,c,3,4].
[1,2,a,b,c,3,4]
2> FaultyIsEven = fun(E) -> E rem 2 end.
#Fun<erl_eval.42.17316486>
3> [E || E <- List, FaultyIsEven(E)].
** exception error: bad filter 1
4> IsEven = fun(E) -> E rem 2 =:= 0 end.
#Fun<erl_eval.42.17316486>
5> [E || E <- List, IsEven(E)].
** exception error: an error occurred when evaluating an arithmetic expression
 in operator rem/2
 called as a rem 2
6> [E || E <- List, is_integer(E), IsEven(E)].
[2,4]

 Guard Sequences

A guard sequence is a sequence of guards, separated by semicolon (;). The
guard sequence is true if at least one of the guards is true. (The remaining
guards, if any, are not evaluated.)
Guard1; ...; GuardK
A guard is a sequence of guard expressions, separated by comma (,). The guard
is true if all guard expressions evaluate to true.
GuardExpr1, ..., GuardExprN

 Guard Expressions

The set of valid guard expressions is a subset of the set of valid Erlang
expressions. The reason for restricting the set of valid expressions is that
evaluation of a guard expression must be guaranteed to be free of side effects.
Valid guard expressions are the following:
	Variables
	Constants (atoms, integer, floats, lists, tuples, records, binaries, and maps)
	Expressions that construct atoms, integer, floats, lists, tuples, records,
binaries, and maps
	Expressions that update a map
	The record expressions Expr#Name.Field and #Name.Field
	Calls to the BIFs specified in tables Type Test BIFs and Other BIFs Allowed
in Guard Expressions
	Term comparisons
	Arithmetic expressions
	Boolean expressions
	Short-circuit expressions (andalso/orelse)

	BIF
	is_atom/1
	is_binary/1
	is_bitstring/1
	is_boolean/1
	is_float/1
	is_function/1
	is_function/2
	is_integer/1
	is_list/1
	is_map/1
	is_number/1
	is_pid/1
	is_port/1
	is_record/2
	is_record/3
	is_reference/1
	is_tuple/1

Table: Type Test BIFs
Notice that most type test BIFs have older equivalents, without the
is_ prefix. These old BIFs are retained only for backwards
compatibility and are not to be used in new code. They are also only
allowed at top level. For example, they are not allowed in Boolean
expressions in guards.
	BIF
	abs(Number)
	bit_size(Bitstring)
	byte_size(Bitstring)
	element(N, Tuple)
	float(Term)
	hd(List)
	is_map_key(Key, Map)
	length(List)
	map_get(Key, Map)
	map_size(Map)
	max(A, B)
	min(A, B)
	node/0
	node(Pid | Ref | Port)
	round(Number)
	self/0
	size(Tuple | Bitstring)
	tl(List)
	trunc(Number)
	tuple_size(Tuple)

Table: Other BIFs Allowed in Guard Expressions
Change
The min/2 and max/2 BIFs are allowed to be used in
guards from Erlang/OTP 26.
If an arithmetic expression, a Boolean expression, a short-circuit expression,
or a call to a guard BIF fails (because of invalid arguments), the entire guard
fails. If the guard was part of a guard sequence, the next guard in the sequence
(that is, the guard following the next semicolon) is evaluated.

 Operator Precedence

Operator precedence in descending order:
	Operator	Association
	#	
	Unary + - bnot not	
	/ * div rem band and	Left-associative
	+ - bor bxor bsl bsr or xor	Left-associative
	++ --	Right-associative
	== /= =< < >= > =:= =/=	Non-associative
	andalso	Left-associative
	orelse	Left-associative
	catch	
	= !	Right-associative
	?=	Non-associative

Table: Operator Precedence
Change
Before Erlang/OTP 24, the catch operator had the lowest precedence.
Note
The = operator in the table is the
match operator. The character = can also
denote the
compound pattern operator, which
can only be used in patterns.
?= is restricted in that it can only be used at the top-level inside a
maybe block.
When evaluating an expression, the operator with the highest precedence is
evaluated first. Operators with the same precedence are evaluated according to
their associativity. Non-associative operators cannot be combined with operators
of the same precedence.
Examples:
The left-associative arithmetic operators are evaluated left to right:
6 + 5 * 4 - 3 / 2 evaluates to
6 + 20 - 1.5 evaluates to
26 - 1.5 evaluates to
24.5
The non-associative operators cannot be combined:
1> 1 < X < 10.
* 1:7: syntax error before: '<'

Preprocessor

 File Inclusion

A file can be included as follows:
-include(File).
-include_lib(File).
File, a string, is to point out a file. The contents of this file are included
as is, at the position of the directive.
Include files are typically used for record and macro definitions that are
shared by several modules. It is recommended to use the file name extension
.hrl for include files.
File can start with a path component $VAR, for some string VAR. If that is
the case, the value of the environment variable VAR as returned by
os:getenv(VAR) is substituted for $VAR. If os:getenv(VAR) returns false,
$VAR is left as is.
If the filename File is absolute (possibly after variable substitution), the
include file with that name is included. Otherwise, the specified file is
searched for in the following directories, and in this order:
	The current working directory
	The directory where the module is being compiled
	The directories given by the include option

For details, see erlc in ERTS and
compile in Compiler.
Examples:
-include("my_records.hrl").
-include("incdir/my_records.hrl").
-include("/home/user/proj/my_records.hrl").
-include("$PROJ_ROOT/my_records.hrl").
include_lib is similar to include, but is not to point out an absolute file.
Instead, the first path component (possibly after variable substitution) is
assumed to be the name of an application.
Example:
-include_lib("kernel/include/file.hrl").
The code server uses code:lib_dir(kernel) to find the directory of the current
(latest) version of Kernel, and then the subdirectory include is searched for
the file file.hrl.

 Defining and Using Macros

A macro is defined as follows:
-define(Const, Replacement).
-define(Func(Var1,...,VarN), Replacement).
A macro definition can be placed anywhere among the attributes and function
declarations of a module, but the definition must come before any usage of the
macro.
If a macro is used in several modules, it is recommended that the macro
definition is placed in an include file.
A macro is used as follows:
?Const
?Func(Arg1,...,ArgN)
Macros are expanded during compilation. A simple macro ?Const is replaced with
Replacement.
Example:
-define(TIMEOUT, 200).
...
call(Request) ->
 server:call(refserver, Request, ?TIMEOUT).
This is expanded to:
call(Request) ->
 server:call(refserver, Request, 200).
A macro ?Func(Arg1,...,ArgN) is replaced with Replacement, where all
occurrences of a variable Var from the macro definition are replaced with the
corresponding argument Arg.
Example:
-define(MACRO1(X, Y), {a, X, b, Y}).
...
bar(X) ->
 ?MACRO1(a, b),
 ?MACRO1(X, 123)
This is expanded to:
bar(X) ->
 {a,a,b,b},
 {a,X,b,123}.
It is good programming practice, but not mandatory, to ensure that a macro
definition is a valid Erlang syntactic form.
To view the result of macro expansion, a module can be compiled with the 'P'
option. compile:file(File, ['P']). This produces a listing of the parsed code
after preprocessing and parse transforms, in the file File.P.

 Predefined Macros

The following macros are predefined:
	?MODULE - The name of the current module, as an atom.

	?MODULE_STRING - The name of the current module, as a string.

	?FILE - The file name of the current module, as a string.

	?LINE - The current line number, as an integer.

	?MACHINE - The machine name, 'BEAM'.

	?FUNCTION_NAME - The name of the current function, as an atom.

	?FUNCTION_ARITY - The arity (number of arguments) for the current
function, as an integer.

	?OTP_RELEASE - The OTP release for the runtime system that is
running the compiler, as an integer. For example, when compiling using
Erlang/OTP 27, the macro returns 27.
Note
To find out the release at run-time, call
erlang:system_info(otp_release). Note
that it returns the release as a string. For example, when the
release is Erlang/OTP 27, the string "27" will be returned.
Change
The ?OTP_RELEASE macro was introduced in Erlang/OTP 21.

	?FEATURE_AVAILABLE(Feature) - Expands to true if the
feature Feature is available. The feature
might or might not be enabled.
Change
The ?FEATURE_AVAILABLE() macro was introduced in Erlang/OTP 25.

	?FEATURE_ENABLED(Feature) - Expands to true if the
feature Feature is enabled.
Change
The ?FEATURE_ENABLED() macro was introduced in Erlang/OTP 25.

 Macros Overloading

It is possible to overload macros, except for predefined macros. An overloaded
macro has more than one definition, each with a different number of arguments.
Change
Support for overloading of macros was added in Erlang 5.7.5/OTP R13B04.
A macro ?Func(Arg1,...,ArgN) with a (possibly empty) list of arguments results
in an error message if there is at least one definition of Func with
arguments, but none with N arguments.
Assuming these definitions:
-define(F0(), c).
-define(F1(A), A).
-define(C, m:f).
the following does not work:
f0() ->
 ?F0. % No, an empty list of arguments expected.

f1(A) ->
 ?F1(A, A). % No, exactly one argument expected.
On the other hand,
f() ->
 ?C().
is expanded to
f() ->
 m:f().

 Removing a macro definition

A definition of macro can be removed as follows:
-undef(Macro).

 Conditional Compilation

The following macro directives support conditional compilation:
	-ifdef(Macro). - Evaluate the following lines only if Macro is
defined.

	-ifndef(Macro). - Evaluate the following lines only if Macro is not
defined.

	-else. - Only allowed after the ifdef, ifndef, if, and elif
directives. The lines following else are evaluated if the preceding
directive evaluated to false.

	-if(Condition). - Evaluates the following lines only if Condition
evaluates to true.

	-elif(Condition). - Only allowed after an if or another elif
directive. If the preceding if or elif directive does not evaluate to
true, and the Condition evaluates to true, the lines following the elif
are evaluated instead.

	-endif. - Specifies the end of a series of control flow directives.

Note
Macro directives cannot be used inside functions.
Syntactically, the Condition in if and elif must be a
guard expression. Other constructs (such as
a case expression) result in a compilation error.
As opposed to the standard guard expressions, an expression in an if and
elif also supports calling the psuedo-function defined(Name), which tests
whether the Name argument is the name of a previously defined macro.
defined(Name) evaluates to true if the macro is defined and false
otherwise. An attempt to call other functions results in a compilation error.
Example:
-module(m).
...

-ifdef(debug).
-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
-else.
-define(LOG(X), true).
-endif.

...
When trace output is desired, debug is to be defined when the module m is
compiled:
% erlc -Ddebug m.erl

or

1> c(m, {d, debug}).
{ok,m}
?LOG(Arg) is then expanded to a call to io:format/2 and provide the user
with some simple trace output.
Example:
-module(m)
...
-if(?OTP_RELEASE >= 25).
%% Code that will work in OTP 25 or higher
-elif(?OTP_RELEASE >= 26).
%% Code that will work in OTP 26 or higher
-else.
%% Code that will work in OTP 24 or lower.
-endif.
...
This code uses the OTP_RELEASE macro to conditionally select code depending on
release.
Example:
-module(m)
...
-if(?OTP_RELEASE >= 26 andalso defined(debug)).
%% Debugging code that requires OTP 26 or later.
-else.
%% Non-debug code that works in any release.
-endif.
...
This code uses the OTP_RELEASE macro and defined(debug) to compile debug
code only for OTP 26 or later.

 The -feature() directive

The directive -feature(FeatureName, enable | disable) can be used to enable or
disable the feature FeatureName. This is
the preferred way of enabling (disabling) features, although it is possible to
do it with options to the compiler as well.
Note that the -feature(..) directive may only appear before any syntax is
used. In practice this means it should appear before any -export(..) or record
definitions.

 -error() and -warning() directives

The directive -error(Term) causes a compilation error.
Example:
-module(t).
-export([version/0]).

-ifdef(VERSION).
version() -> ?VERSION.
-else.
-error("Macro VERSION must be defined.").
version() -> "".
-endif.
The error message will look like this:
% erlc t.erl
t.erl:7: -error("Macro VERSION must be defined.").
The directive -warning(Term) causes a compilation warning.
Example:
-module(t).
-export([version/0]).

-ifndef(VERSION).
-warning("Macro VERSION not defined -- using default version.").
-define(VERSION, "0").
-endif.
version() -> ?VERSION.
The warning message will look like this:
% erlc t.erl
t.erl:5: Warning: -warning("Macro VERSION not defined -- using default version.").
Change
The -error() and -warning() directives were added in Erlang/OTP 19.

 Stringifying Macro Arguments

The construction ??Arg, where Arg is a macro argument, is expanded to a
string containing the tokens of the argument. This is similar to the #arg
stringifying construction in C.
Example:
-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).

?TESTCALL(myfunction(1,2)),
?TESTCALL(you:function(2,1)).
results in
io:format("Call ~s: ~w~n",["myfunction (1 , 2)",myfunction(1,2)]),
io:format("Call ~s: ~w~n",["you : function (2 , 1)",you:function(2,1)]).
That is, a trace output, with both the function called and the resulting value.

Records

A record is a data structure for storing a fixed number of elements. It has
named fields and is similar to a struct in C. Record expressions are translated
to tuple expressions during compilation.
More examples are provided in
Programming Examples.

 Defining Records

A record definition consists of the name of the record, followed by the field
names of the record. Record and field names must be atoms. Each field can be
given an optional default value. If no default value is supplied, undefined is
used.
-record(Name, {Field1 [= Expr1],
 ...
 FieldN [= ExprN]}).
The default value for a field is an arbitrary expression, except that it must
not use any variables.
A record definition can be placed anywhere among the attributes and function
declarations of a module, but the definition must come before any usage of the
record.
If a record is used in several modules, it is recommended that the record
definition is placed in an include file.
Change
Starting from Erlang/OTP 26, records can be defined in the Erlang shell
using the syntax described in this section. In earlier releases, it was
necessary to use the shell built-in function rd/2.

 Creating Records

The following expression creates a new Name record where the value of each
field FieldI is the value of evaluating the corresponding expression ExprI:
#Name{Field1=Expr1, ..., FieldK=ExprK}
The fields can be in any order, not necessarily the same order as in the record
definition, and fields can be omitted. Omitted fields get their respective
default value instead.
If several fields are to be assigned the same value, the following construction
can be used:
#Name{Field1=Expr1, ..., FieldK=ExprK, _=ExprL}
Omitted fields then get the value of evaluating ExprL instead of their default
values. This feature is primarily intended to be used to create patterns for ETS
and Mnesia match functions.
Example:
-record(person, {name, phone, address}).

lookup(Name, Tab) ->
 ets:match_object(Tab, #person{name=Name, _='_'}).

 Accessing Record Fields

Expr#Name.Field
Returns the value of the specified field. Expr is to evaluate to a Name
record.
Example:
-record(person, {name, phone, address}).

get_person_name(Person) ->
 Person#person.name.
The following expression returns the position of the specified field in the
tuple representation of the record:
#Name.Field
Example:
-record(person, {name, phone, address}).

lookup(Name, List) ->
 lists:keyfind(Name, #person.name, List).

 Updating Records

Expr#Name{Field1=Expr1, ..., FieldK=ExprK}
Expr is to evaluate to a Name record. A copy of this record is returned,
with the value of each specified field FieldI changed to the value of
evaluating the corresponding expression ExprI. All other fields retain their
old values.

 Records in Guards

Since record expressions are expanded to tuple expressions, creating
records and accessing record fields are allowed in guards. However,
all subexpressions (for initializing fields), must be valid guard
expressions as well.
Examples:
handle(Msg, State) when Msg =:= #msg{to=void, no=3} ->
 ...

handle(Msg, State) when State#state.running =:= true ->
 ...
There is also a type test BIF is_record(Term, RecordTag).
Example:
is_person(P) when is_record(P, person) ->
 true;
is_person(_P) ->
 false.

 Records in Patterns

A pattern that matches a certain record is created in the same way as a record
is created:
#Name{Field1=Expr1, ..., FieldK=ExprK}
In this case, one or more of Expr1 ... ExprK can be unbound variables.

 Nested Records

Assume the following record definitions:
-record(nrec0, {name = "nested0"}).
-record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
-record(nrec2, {name = "nested2", nrec1=#nrec1{}}).

N2 = #nrec2{},
Accessing or updating nested records can be written without parentheses:
"nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,
 N0n = N2#nrec2.nrec1#nrec1.nrec0#nrec0{name = "nested0a"},
which is equivalent to:
"nested0" = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0.name,
N0n = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0{name = "nested0a"},
Change
Before Erlang/OTP R14, parentheses were necessary when accessing or updating
nested records.

 Internal Representation of Records

Record expressions are translated to tuple expressions during compilation. A
record defined as:
-record(Name, {Field1, ..., FieldN}).
is internally represented by the tuple:
{Name, Value1, ..., ValueN}
Here each ValueI is the default value for FieldI.
To each module using records, a pseudo function is added during compilation to
obtain information about records:
record_info(fields, Record) -> [Field]
record_info(size, Record) -> Size
Size is the size of the tuple representation, that is, one more than the
number of fields.

Errors and Error Handling

 Terminology

Errors can roughly be divided into four different types:
	Compile-time errors - When the compiler fails to compile the program, for
example a syntax error.

	Logical errors - When a program does not behave as intended, but does not
crash. An example is that nothing happens when a button in a graphical user
interface is clicked.

	 Run-time errors -
When a crash occurs. An example is when an operator is applied to arguments of
the wrong type. The Erlang programming language has built-in features for
handling of run-time errors. A run-time error can also be emulated by calling
error(Reason). Run-time errors are exceptions of class
error.

	 Generated errors
When the code itself calls exit/1 or
throw/1. Generated errors are exceptions of class exit
or throw.

When an exception occurs in Erlang, execution of the process that evaluated the
erroneous expression is stopped. This is referred to as a failure, that
execution or evaluation fails, or that the process fails, terminates, or
exits. Notice that a process can terminate/exit for other reasons than a
failure.
A process that terminates emits an exit signal with an exit reason that
describes why the process terminated. Normally, some information about any
erroneous termination is printed to the terminal. See
Process Termination in the Processes
chapter for more details on termination.

 Exceptions

Exceptions are run-time errors or
generated errors and are of three different
classes, with different origins. The try expression can
distinguish between the different classes, whereas the
catch expression cannot. try and catch are described
in Expressions.
	Class	Origin
	error	Run-time error, for example, 1+a, or the process called error/1
	exit	The process called exit/1
	throw	The process called throw/1

Table: Exception Classes.
All of the above exceptions can also be generated by calling erlang:raise/3.
An exception consists of its class, an exit reason (see
Exit Reason), and a stack trace (which aids in finding
the code location of the exception).
The stack trace can be bound to a variable from within a try expression for
any exception class, or as part of the exit reason when a run-time error is
caught by a catch. Example:
> {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
[{shell,apply_fun,3,[]},
 {erl_eval,do_apply,6,[]},
 ...]
> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
[{shell,apply_fun,3,[]},
 {erl_eval,do_apply,6,[]},
 ...]

 The call-stack back trace (stacktrace)

The stack back-trace (stacktrace) is a list that
contains {Module, Function, Arity, ExtraInfo} and/or {Fun, Arity, ExtraInfo}
tuples. The field Arity in the tuple can be the argument list of that function
call instead of an arity integer, depending on the exception.
ExtraInfo is a (possibly empty) list of two-element tuples in any order that
provides additional information about the exception. The first element is an
atom describing the type of information in the second element. The following
items can occur:
	error_info - The second element of the tuple is a map providing
additional information about what caused the exception. This information can
be created by calling error/3 and is used by
erl_error:format_exception/4.

	file - The second element of the tuple is a string (list of characters)
representing the filename of the source file of the function.

	line - The second element of the tuple is the line number (an
integer > 0) in the source file where the exception occurred or the function
was called.

Warning
Developers should rely on stacktrace entries only for debugging purposes.
The VM performs tail call optimization, which does not add new entries to the
stacktrace, and also limits stacktraces to a certain depth. Furthermore,
compiler options, optimizations, and future changes may add or remove
stacktrace entries, causing any code that expects the stacktrace to be in a
certain order or contain specific items to fail.
The only exception to this rule is the class error with the reason undef
which is guaranteed to include the Module, Function and Arity of the
attempted function as the first stacktrace entry.

 Handling of Run-time Errors in Erlang

 Error Handling Within Processes

It is possible to prevent run-time errors and other exceptions from
causing the process to terminate by using try
or catch.

 Error Handling Between Processes

Processes can monitor other processes and detect process terminations, see
Processes.

 Exit Reasons

When a run-time error occurs, that is an exception of class error. The exit
reason is a tuple {Reason,Stack}, where Reason is a term indicating the type
of error:
	badarg - Bad argument. The argument is of wrong data type, or
 is otherwise badly formed.

	badarith - An argument for an arithmetic expression was not numeric,
 or the expression does not evaluate to finite number.

	{badmatch,V} - Evaluation of a match expression failed. The
 value V did not match.

	function_clause - No matching function clause is found when
 evaluating a function call.

	{case_clause,V} - No matching branch is found when evaluating
 a case expression. The value V did not match.

	if_clause - No true branch is found when evaluating an if
 expression.

	{try_clause,V} - No matching branch is found when evaluating
 the of-section of a try expression. The value V did not
 match.

	undef - The function cannot be found when evaluating a
 function call.

	{badfun,F} - F was expected to a be a fun, but is not.

	{badarity,{Fun,Args}} - A fun is applied to the wrong number of
 arguments.

	timeout_value - The timeout value in a receive...after
 expression is evaluated to something else than an integer or
 infinity.

	noproc - Trying to create link or
 monitor to a non-existing process or port.

	noconnection - A link or monitor to a remote process was
 broken because a connection between the nodes could not be
 established or was severed.

	{nocatch,V} - Trying to evaluate a throwoutside a
 catch. V is the thrown term.

	system_limit - A system limit has been reached. See
 System Limits in the Efficiency Guide
 for information about system limits.

Stack is the stack of function calls being evaluated when the error occurred,
given as a list of tuples {Module,Name,Arity,ExtraInfo} with the most recent
function call first. The most recent function call tuple can in some cases be
{Module,Name,[Arg],ExtraInfo}.

Features

 Introduced in OTP 25, Erlang has the concept of selectable
features. A feature can change, add or remove behaviour of the language and/or
runtime system. Examples can include:
	Adding new syntactical constructs to the language
	Change the semantics of an existing construct
	Change the behaviour of some runtime aspect

A feature will start out with a status of experimental part of OTP, making it
possible to try out for users and give feedback. The possibility to try out
features is enabled by options to the compiler, directives in a module and
options to the runtime system. Even when a feature is not experimental it will
still be possible to enable or disable it. This makes it possible to adapt a
code base at a suitable pace instead of being forced when changing to a new
release.
The status of a feature will eventually end up as being either a permanent part
of OTP or rejected, being removed and no longer selectable.

 Life cycle of features

A feature is in one of four possible states:
	Experimental - The initial state, is meant for trying out and collecting
feedback. The feature can be enabled but is disabled by default.

	Approved - The feature has been finalised and is now part of OTP. By
default it is enabled, but can be disabled.

	Permanent - The feature is now a permanent part of OTP. It can no longer
be disabled.

	Rejected - The feature never reached the approved state and will not be
part of OTP. It cannot be enabled.

After leaving the experimental state, a feature can enter any of the other three
states, and if the next state is approved, the feature will eventually end up in
the permanent state. A feature can change state only in connection with a
release.
A feature may be in the approved state for several releases.
	State	Default	Configurable	Available
	Experimental	disabled	yes	yes
	Approved	enabled	yes	yes
	Permanent	enabled	no	yes
	Rejected	disabled	no	no

Table: Feature States
	Being configurable means the possibility to enable or disable the feature by
means of compiler options and directives in the file being compiled.
	Being available can be seen using the FEATURE_AVAILABLE macro.

 Enabling and Disabling Features

To use a feature that is in the experimental state, it has to be enabled during
compilation. This can be done in a number of different ways:
	Options to erlc - Options
-enable-feature and
-disable-feature can be used to
enable or disable individal features.

	Compiler options - The compiler option
{feature, <feature>, enable|disable} can be
used either as a +<term> option to erlc or in the options argument to
functions in the compile module.

	The feature directive - Inside a prefix of a module, one can use a
-feature(<feature>, enable|disable)
directive. This is the preferred method of enabling and disabling features.

Change
In Erlang/OTP 25, in order to load a module with a feature enabled, it was
necessary to also enable the feature in the runtime. This was done using
option -enable-feature to erl. This
requirement was removed in Erlang/OTP 26. However, if you want to use features
directly in shell, you still need to enable them in the runtime.

 Preprocessor Additions

To allow for conditional compilation during transitioning of a code base and/or
trying out experimental features
feature predefined macros
?FEATURE_AVAILABLE(Feature) and ?FEATURE_ENABLED(Feature) are available.

 Information about Existing Features

The module erl_features erl_features exports a number of functions that
can be used to obtain information about current features as well as the features
used when compiling a module.
One can also use the erlc options
-list-features and
-describe-feature <feature> to get
information about existing features.
Additionally, there is the compiler option
warn_keywords that can be used to find atoms in
the code base that might collide with keywords in features not yet enabled.

 Existing Features

The following configurable features exist:
	maybe_expr (approved) - Implementation of the
maybe expression proposed in
EEP 49.
It was approved in Erlang/OTP 27.

Processes

 Processes

Erlang is designed for massive concurrency. Erlang processes are lightweight
(grow and shrink dynamically) with small memory footprint, fast to create and
terminate, and the scheduling overhead is low.

 Process Creation

A process is created by calling spawn():
spawn(Module, Name, Args) -> pid()
 Module = Name = atom()
 Args = [Arg1,...,ArgN]
 ArgI = term()
spawn() creates a new process and returns the pid.
The new process starts executing in Module:Name(Arg1,...,ArgN) where the
arguments are the elements of the (possible empty) Args argument list.
There exist a number of different spawn BIFs:
	spawn/1,2,3,4
	spawn_link/1,2,3,4
	spawn_monitor/1,2,3,4
	spawn_opt/2,3,4,5
	spawn_request/1,2,3,4,5

 Registered Processes

Besides addressing a process by using its pid, there are also BIFs for
registering a process under a name. The name must be an atom and is
automatically unregistered if the process terminates:
	BIF	Description
	register(Name, Pid)	Associates the name Name, an atom, with the process Pid.
	registered/0	Returns a list of names that have been registered using register/2.
	whereis(Name)	Returns the pid registered under Name, or undefinedif the name is not registered.

Table: Name Registration BIFs

 Process Aliases

When sending a message to a process, the receiving process can be identified by
a Pid, a
registered name, or a process
alias which is a term of the type reference. The
typical use case that process aliases were designed for is a request/reply
scenario. Using a process alias when sending the reply makes it possible for the
receiver of the reply to prevent the reply from reaching its message queue if
the operation times out or if the connection between the processes is lost.
A process alias can be used as identifier of the receiver when sending a message
using the send operator (!) or send BIFs such as
erlang:send/2. As long as the process alias is active, messages will be
delivered the same way as if the process identifier of the process that created
the alias had been used. When the alias has been deactivated, messages sent
using the alias will be dropped before entering the message queue of the
receiver. Note that messages that at deactivation time already have entered the
message queue will not be removed.
A process alias is created either by calling one of the
alias/0,1 BIFs or by creating an alias and a monitor
simultaneously. If the alias is created together with a monitor, the same
reference will be used both as monitor reference and alias. Creating a monitor
and an alias at the same time is done by passing the {alias, _} option to the
monitor/3 BIF. The {alias, _} option can also be
passed when creating a monitor via spawn_opt(), or
spawn_request().
A process alias can be deactivated by the process that created it by calling the
unalias/1 BIF. It is also possible to automatically
deactivate an alias on certain events. See the documentation of the
alias/1 BIF, and the {alias, _} option of the
monitor/3 BIF for more information about automatic
deactivation of aliases.
It is not possible to:
	create an alias identifying another process than the caller.
	deactivate an alias unless it identifies the caller.
	look up an alias.
	look up the process identified by an alias.
	check if an alias is active or not.
	check if a reference is an alias.

These are all intentional design decisions relating to performance, scalability,
and distribution transparency.

 Process Termination

When a process terminates, it always terminates with an exit reason. The
reason can be any term.
A process is said to terminate normally, if the exit reason is the atom
normal. A process with no more code to execute terminates normally.
A process terminates with an exit reason {Reason,Stack} when a run-time error
occurs. See Exit Reasons.
A process can terminate itself by calling one of the following BIFs:
	exit(Reason)
	error(Reason)
	error(Reason, Args)

The process then terminates with reason Reason for exit/1 or
{Reason,Stack} for the others.
A process can also be terminated if it receives an exit signal with another exit
reason than normal, see Error Handling.

 Signals

 All communication between Erlang processes and Erlang
ports is done by sending and receiving asynchronous signals. The most common
signals are Erlang message signals. A message signal can be sent using the
send operator !. A received message can be fetched from
the message queue by the receiving process using the
receive expression.

Synchronous communication can be broken down into multiple asynchronous signals.
An example of such a synchronous communication is a call to the
erlang:process_info/2 BIF when the first argument does not equal the process
identifier of the calling process. The caller sends an asynchronous signal
requesting information, and then blocks waiting for the reply signal containing
the requested information. When the request signal reaches its destination, the
destination process replies with the requested information.

 Sending Signals

There are many signals that processes and ports use to communicate. The list
below contains the most important signals. In all the cases of request/reply
signal pairs, the request signal is sent by the process calling the specific
BIF, and the reply signal is sent back to it when the requested operation has
been performed.
	message - Sent when using the send operator !,
or when calling one of the erlang:send/2,3 or
erlang:send_nosuspend/2,3 BIFs.

	link - Sent when calling the link/1 BIF.

	unlink - Sent when calling the unlink/1 BIF.

	exit - Sent either when explicitly sending an exit signal by calling
the exit/2 BIF, or when a
linked process terminates. If the
signal is sent due to a link, the signal is sent after all
directly visible Erlang resources
used by the process have been released.

	monitor - Sent when calling one of the monitor/2,3
BIFs.

	demonitor - Sent when calling one of the
demonitor/1,2 BIFs, or when a process monitoring
another process terminates.

	down - Sent by a
monitored process or port that terminates.
The signal is sent after all
directly visible Erlang resources
used by the process or the port have been released.

	change - Sent by the
clock service on the local runtime
system, when the time offset changes, to processes
which have monitored the time_offset.

	group_leader - Sent when calling the
group_leader/2 BIF.

	spawn_request/spawn_reply, open_port_request/open_port_reply -
Sent due to a call to one of the spawn/1,2,3,4,
spawn_link/1,2,3,4,
spawn_monitor/1,2,3,4,
spawn_opt/2,3,4,5,
spawn_request/1,2,3,4,5, or erlang:open_port/2
BIFs. The request signal is sent to the
spawn service which responds with the
reply signal.

	alive_request/alive_reply - Sent due to a call to the
is_process_alive/1 BIF.

	garbage_collect_request/garbage_collect_reply,
check_process_code_request/check_process_code_reply,
process_info_request/process_info_reply - Sent due to a call to one of
the garbage_collect/1,2,
erlang:check_process_code/2,3, or
process_info/1,2 BIFs. Note that if the request is
directed towards the caller itself and it is a synchronous request, no
signaling will be performed and the caller will instead synchronously perform
the request before returning from the BIF.

	port_command, port_connect, port_close - Sent by a process to a port
on the local node using the send operator (!), or by
calling one of the send() BIFs. The signal is sent by
passing a term on the format {Owner, {command, Data}},
{Owner, {connect, Pid}}, or {Owner, close} as message.

	port_command_request/port_command_reply,
port_connect_request/port_connect_reply,
port_close_request/port_close_reply,
port_control_request/port_control_reply,
port_call_request/port_call_reply,
port_info_request/port_info_reply - Sent due to a call to one of the
erlang:port_command/2,3, erlang:port_connect/2,
erlang:port_close/1, erlang:port_control/3, erlang:port_call/3,
erlang:port_info/1,2 BIFs. The request signal is
sent to a port on the local node which responds with the reply signal.

	register_name_request/register_name_reply,
unregister_name_request/unregister_name_reply,
whereis_name_request/whereis_name_reply - Sent due to a call to one of
the register/2,
unregister/1, or whereis/1
BIFs. The request signal is sent to the
name service, which responds with the
reply signal.

	timer_start_request/timer_start_reply,
timer_cancel_request/timer_cancel_reply - Sent due to a call to one of
the erlang:send_after/3,4,
erlang:start_timer/3,4, or
erlang:cancel_timer/1,2 BIFs. The request signal
is sent to the timer service which
responds with the reply signal.

 The clock service, the name service, the timer
service, and the spawn service mentioned previously are services provided by the
runtime system. Each of these services consists of multiple independently
executing entities. Such a service can be viewed as a group of processes, and
could actually be implemented like that. Since each service consists of multiple
independently executing entities, the order between multiple signals sent from
one service to one process is not preserved. Note that this does not violate
the signal ordering guarantee of the
language.
The realization of the signals described earlier may change both at runtime and
due to changes in implementation. You may be able to detect such changes using
receive tracing or by inspecting message queues. However, these are internal
implementation details of the runtime system that you should not rely on. As
an example, many of the reply signals are ordinary message signals. When
the operation is synchronous, the reply signals do not have to be message
signals. The current implementation takes advantage of this and, depending on
the state of the system, use alternative ways of delivering the reply signals.
The implementation of these reply signals may also, at any time, be changed to
not use message signals where it previously did.

 Receiving Signals

Signals are received asynchronously and automatically. There is nothing a
process must do to handle the reception of signals, or can do to prevent it. In
particular, signal reception is not tied to the execution of a
receive expression, but can happen anywhere in the
execution flow of a process.
When a signal is received by a process, some kind of action is taken. The
specific action taken depends on the signal type, contents of the signal, and
the state of the receiving process. Actions taken for the most common signals:
	message - If the message signal was sent using a
process alias that is no longer
active, the message signal will be dropped; otherwise, if the alias is still
active or the message signal was sent by other means, the message is added to
the end of the message queue. When the message has been added to the message
queue, the receiving process can fetch the message from the message queue
using the receive expression.

	link, unlink - Very simplified it can be viewed as updating process
local information about the link. A detailed description of the
link protocol can be found in
the Distribution Protocol chapter of the ERTS User's Guide.

	exit - Set the receiver in an exiting state, drop the signal, or convert
the signal into a message and add it to the end of the message queue. If the
receiver is set in an exiting state, no more Erlang code will be executed and
the process is scheduled for termination. The section
Receiving Exit Signals below
gives more details on the action taken when an exit signal is received.

	monitor, demonitor - Update process local information about the
monitor.

	down, change - Convert into a message if the corresponding monitor is
still active; otherwise, drop the signal. If the signal is converted into a
message, it is also added to the end of the message queue.

	group_leader - Change the group leader of the process.

	spawn_reply - Convert into a message, or drop the signal depending on
the reply and how the spawn_request signal was configured. If the signal is
converted into a message it is also added to the end of the message queue. For
more information see the spawn_request() BIF.

	alive_request - Schedule execution of the is alive test. If the
process is in an exiting state, the is alive test will not be executed until
after all
directly visible Erlang resources
used by the process have been released. The alive_reply will be sent after
the is alive test has executed.

	process_info_request, garbage_collect_request,
check_process_code_request - Schedule execution of the requested
operation. The reply signal will be sent when the operation has been executed.

Note that some actions taken when a signal is received involves scheduling
further actions which will result in a reply signal when these scheduled actions
have completed. This implies that the reply signals may be sent in a different
order than the order of the incoming signals that triggered these operations.
This does, however, not violate the
signal ordering guarantee of the
language.
 The order of messages in the message queue of a
process reflects the order in which the signals corresponding to the messages
has been received since
all signals that add messages to the message queue add them at the end of the message queue.
Messages corresponding to signals from the same sender are also ordered in the
same order as the signals were sent due to the
signal ordering guarantee of the
language.

 Directly Visible Erlang Resources

As described earlier, exit signals due to links, down signals, and reply
signals from an exiting process due to alive_requests are not sent until all
directly visible Erlang resources held by the terminating process have been
released. With directly visible Erlang resources we here mean all resources
made available by the language excluding resources held by heap data, dirty
native code execution and the process identifier of the terminating process.
Examples of directly visible Erlang resources are
registered name and ETS
tables.
The Excluded Resources
The process identifier of the process cannot be released for reuse until
everything regarding the process has been released.
A process executing dirty native code in a NIF when it receives an exit signal
will be set into an exiting state even if it is still executing dirty native
code. Directly visible Erlang resources will be released, but the runtime
system cannot force the native code to stop executing. The runtime system tries
to prevent the execution of the dirty native code from affecting other processes
by, for example, disabling functionality such as
enif_send() when used from a terminated
process, but if the NIF is not well behaved it can still affect other processes.
A well behaved dirty NIF should test if
the process it is executing in has exited,
and if so stop executing.
In the general case, the heap of a process cannot be removed before all signals
that it needs to send have been sent. Resources held by heap data are the memory
blocks containing the heap, but also include things referred to from the heap
such as off heap binaries, and resources held via NIF
resource objects on the heap.

 Delivery of Signals

The amount of time that passes between the time a signal is sent and the arrival
of the signal at the destination is unspecified but positive. If the receiver
has terminated, the signal does not arrive, but it can trigger another signal.
For example, a link signal sent to a non-existing process triggers an exit
signal, which is sent back to where the link signal originated from. When
communicating over the distribution, signals can be lost if the distribution
channel goes down.
The only signal ordering guarantee given is the following: if an entity sends
multiple signals to the same destination entity, the order is preserved; that
is, if A sends a signal S1 to B, and later sends signal S2 to B, S1
is guaranteed not to arrive after S2. Note that S1 may, or may not have been
lost.

 Irregularities

	Synchronous Error Checking - Some functionality that send signals have
synchronous error checking when sending locally on a node and fail if the
receiver is not present at the time when the signal is sent:
	The send operator (!),
erlang:send/2,3, BIFs and
erlang:send_nosuspend/2,3 BIFs when the
receiver is identified by a name that is expected to be registered locally.
	erlang:link/1
	erlang:group_leader/2

	Unexpected Behaviours of Exit Signals - When a process sends an exit
signal with exit reason normal to itself by calling
erlang:exit(self(), normal) it will be terminated
when the exit signal is received.
In all other cases when an exit signal with exit reason normal is received,
it is dropped.
When an
exit signal with exit reason kill is received,
the action taken is different depending on whether the signal was sent due to
a linked process terminating, or the signal was explicitly sent using the
exit/2 BIF. When sent using the exit/2 BIF,
the signal cannot be trapped, while it
can be trapped if the signal was sent due to a link.

	Blocking Signaling Over Distribution
 When sending a signal over a distribution channel, the sending process may be
suspended even though the signal is supposed to be sent asynchronously. This is
due to the built in flow control over the channel that has been present more or
less for ever. When the size of the output buffer for the channel reach the distribution
buffer busy limit, processes sending on the channel will be suspended until the
size of the buffer shrinks below the limit.
Depending on the reason for why the buffer got full, the time it takes before
suspended processes are resumed can vary very much. A consequence of this
can, for example, be that a timeout in a call to erpc:call()
is significantly delayed.
Since this functionality has been present for so long, it is not possible to
remove it, but it is possible to enable fully asynchronous distributed
signaling on a per process level using
process_flag(async_dist, Bool) which
can be used to solve problems occuring due to blocking signaling. However,
note that you need to make sure that flow control for data sent using fully
asynchronous distributed signaling is implemented, or that the amount of such
data is known to always be limited; otherwise, you may get into a situation
with excessive memory usage.
The size of the distribution buffer busy limit can be inspected by calling
erlang:system_info(dist_buf_busy_limit).

The irregularities mentioned earlier cannot be fixed as they have been part of
Erlang too long and it would break a lot of existing code.

 Links

Two processes can be linked to each other. Also a process and a port that
reside on the same node can be linked to each other. A link between two
processes can be created if one of them calls the link/1
BIF with the process identifier of the other process as argument. Links can also
be created using one the following spawn BIFs
spawn_link(), spawn_opt(),
or spawn_request(). The spawn operation and the
link operation will be performed atomically, in these cases.
If one of the participants of a link terminates, it will
send an exit signal to the other
participant. The exit signal will contain the
exit reason of the terminated
participant.
A link can be removed by calling the unlink/1 BIF.
Links are bidirectional and there can only be one link between two processes.
Repeated calls to link() have no effect. Either one of the involved processes
may create or remove a link.
Links are used to monitor the behavior of other processes, see
Error Handling.

 Error Handling

Erlang has a built-in feature for error handling between processes. Terminating
processes emit exit signals to all linked processes, which can terminate as well
or handle the exit in some way. This feature can be used to build hierarchical
program structures where some processes are supervising other processes, for
example, restarting them if they terminate abnormally.
See
OTP Design Principles
for more information about OTP supervision trees, which use this feature.

 Sending Exit Signals

When a process or port terminates it
will send exit signals to all processes and ports that it is
linked to. The exit signal will contain the
following information:
	Sender identifier - The process or port identifier of the process or port
that terminated.

	Receiver identifier - The process or port identifier of the process or
port which the exit signal is sent to.

	The link flag - This flag will be set indicating that the exit signal
was sent due to a link.

	 Exit reason
The exit reason of the process or port that terminated or the atom:
	noproc in case no process or port was found when setting up a link in a
preceding call to the link(PidOrPort) BIF. The process
or port identified as sender of the exit signal will equal the PidOrPort
argument passed to link/1.
	noconnection in case the linked processes resides on different nodes and
the connection between the nodes was lost or could not be established. The
process or port identified as sender of the exit signal might in this case
still be alive.

Exit signals can also be sent explicitly by calling the
exit(PidOrPort, Reason) BIF. The exit signal is sent to the
process or port identified by the PidOrPort argument. The exit signal sent
will contain the following information:
	Sender identifier - The process identifier of the process that called
exit/2.

	Receiver identifier - The process or port identifier of the process or
port which the exit signal is sent to.

	The link flag - This flag will not be set, indicating that this exit
signal was not sent due to a link.

	Exit reason - The term passed as Reason in the call to
exit/2. If Reason is the atom kill, the receiver cannot
trap the exit signal and will
unconditionally terminate when it receives the signal.

 Receiving Exit Signals

What happens when a process receives an exit signal depends on:
	The trap exit state of the receiver at
the time when the exit signal is received.
	The exit reason of the exit signal.
	The sender of the exit signal.
	The state of the link flag of the exit signal. If the link flag is set,
the exit signal was sent due to a link; otherwise, the exit signal was sent by
a call to the exit/2 BIF.
	If the link flag is set, what happens also depends on whether the
link is still active or not when the exit signal is
received.

Based on the above states, the following will happen when an exit signal is
received by a process:
	The exit signal is silently dropped if:
	the link flag of the exit signal is set and the corresponding link has
been deactivated.
	the exit reason of the exit signal is the atom normal, the receiver is not
trapping exits, and the receiver and sender are not the same process.

	The receiving process is terminated if:
	the link flag of the exit signal is not set, and the exit reason of the
exit signal is the atom kill. The receiving process will terminate with
the atom killed as exit reason.
	the receiver is not trapping exits, and the exit reason is something other
than the atom normal. Also, if the link flag of the exit signal is set,
the link also needs to be active otherwise the exit signal will be dropped.
The exit reason of the receiving process will equal the exit reason of the
exit signal. Note that if the link flag is set, an exit reason of kill
will not be converted to killed.
	the exit reason of the exit signal is the atom normal and the sender of
the exit signal is the same process as the receiver. The link flag cannot
be set in this case. The exit reason of the receiving process will be the
atom normal.

	The exit signal is converted to a message signal and added to the end of the
message queue of the receiver, if the receiver is trapping exits, the link
flag of the exit signal is:
	not set, and the exit reason of the signal is not the atom kill.
	set, and the corresponding link is active. Note that an exit reason of
kill will not terminate the process in this case and it will not be
converted to killed.

The converted message will be on the form {'EXIT', SenderID, Reason} where
Reason equals the exit reason of the exit signal and SenderID is the
identifier of the process or port that sent the exit signal.

 Monitors

An alternative to links are monitors. A process Pid1 can create a
monitor for Pid2 by calling the BIF erlang:monitor(process, Pid2). The function returns a reference Ref.
If Pid2 terminates with exit reason Reason, a 'DOWN' message is sent to
Pid1:
{'DOWN', Ref, process, Pid2, Reason}
If Pid2 does not exist, the 'DOWN' message is sent immediately with Reason
set to noproc.
Monitors are unidirectional. Repeated calls to erlang:monitor(process, Pid)
creates several independent monitors, and each one sends a 'DOWN' message when
Pid terminates.
A monitor can be removed by calling erlang:demonitor(Ref).
Monitors can be created for processes with registered names, also at other
nodes.

 Process Dictionary

Each process has its own process dictionary, accessed by calling the following
BIFs:
	put(Key, Value)
	get(Key)
	get()
	get_keys(Value)
	erase(Key)
	erase()

Distributed Erlang

 Distributed Erlang System

A distributed Erlang system consists of a number of Erlang runtime systems
communicating with each other. Each such runtime system is called a node.
Message passing between processes at different nodes, as well as links and
monitors, are transparent when pids are used. Registered names, however, are
local to each node. This means that the node must be specified as well when
sending messages, and so on, using registered names.
The distribution mechanism is implemented using TCP/IP sockets. How to implement
an alternative carrier is described in the
ERTS User's Guide.
Warning
Starting a distributed node without also specifying
-proto_dist inet_tls will expose the node
to attacks that may give the attacker complete access to the node and in
extension the cluster. When using un-secure distributed nodes, make sure that
the network is configured to keep potential attackers out. See the
Using SSL for Erlang Distribution User's Guide
for details on how to setup a secure distributed node.

 Nodes

A node is an executing Erlang runtime system that has been given a name, using
the command-line flag -name (long names) or
-sname (short names).
The format of the node name is an atom name@host. name is the name given by
the user. host is the full host name if long names are used, or the first part
of the host name if short names are used. Function node()
returns the name of the node.
Example:
% erl -name dilbert
(dilbert@uab.ericsson.se)1> node().
'dilbert@uab.ericsson.se'

% erl -sname dilbert
(dilbert@uab)1> node().
dilbert@uab
The node name can also be given in runtime by calling net_kernel:start/1.
Example:
% erl
1> node().
nonode@nohost
2> net_kernel:start([dilbert,shortnames]).
{ok,<0.102.0>}
(dilbert@uab)3> node().
dilbert@uab
Note
A node with a long node name cannot communicate with a node with a short node
name.

 Node Connections

The nodes in a distributed Erlang system are loosely connected. The first time
the name of another node is used, for example, if
spawn(Node, M, F, A) or net_adm:ping(Node) is called, a connection
attempt to that node is made.
Connections are by default transitive. If a node A connects to node B, and node
B has a connection to node C, then node A also tries to connect to node C. This
feature can be turned off by using the command-line flag -connect_all false,
see erl in ERTS.
If a node goes down, all connections to that node are removed. Calling
erlang:disconnect_node(Node) forces
disconnection of a node.
The list of (visible) nodes currently connected to is returned by nodes/0.

 epmd

The Erlang Port Mapper Daemon epmd is automatically started at every host
where an Erlang node is started. It is responsible for mapping the symbolic node
names to machine addresses. See the epmd in ERTS.

 Hidden Nodes

In a distributed Erlang system, it is sometimes useful to connect to a
node without also connecting to all other nodes. An example is some
kind of Operation and Maintenance functionality used to inspect the
status of a system, without disturbing it. For this purpose, a hidden
node can be used.
A hidden node is a node started with the command-line flag -hidden.
Connections between hidden nodes and other nodes are not transitive, they must
be set up explicitly. Also, hidden nodes does not show up in the list of nodes
returned by nodes/0. Instead, nodes(hidden) or
nodes(connected) must be used. This means, for example, that the
hidden node is not added to the set of nodes that global is keeping track of.

 Dynamic Node Name

If the node name is set to undefined the node will be started in a special
mode to be the temporary client of another node. The node will then request a
dynamic node name from the first node it connects to. In addition these
distribution settings will be set:
-dist_listen false -hidden -kernel dist_auto_connect never
As -dist_auto_connect is set to never, net_kernel:connect_node/1 must be
called in order to setup connections. If the first established connection is
closed (which gave the node its dynamic name), then any other connections will
also be closed and the node will lose its dynamic node name. A new call to
net_kernel:connect_node/1 can be made to get a new dynamic node name. The node
name may change if the distribution is dropped and then set up again.
Change
The dynamic node name feature is supported from Erlang/OTP 23. Both the
temporary client node and the first connected peer node (supplying the dynamic
node name) must be at least Erlang/OTP 23 for it to work.

 C Nodes

A C node is a C program written to act as a hidden node in a distributed
Erlang system. The library Erl_Interface contains functions for this purpose.
For more information about C nodes, see the
Erl_Interface application and
Interoperability Tutorial..

 Security

Note
"Security" here does not mean cryptographically secure, but rather security
against accidental misuse, such as preventing a node from connecting to a
cluster with which it is not intended to communicate.
Furthermore, the communication between nodes is per default in clear text. If
you need strong security, please see
Using TLS for Erlang Distribution in the SSL
application's User's Guide.
Also, the default random cookie mentioned in the following text is not very
unpredictable. A better one can be generated using primitives in the crypto
module, though this still does not make the initial handshake
cryptographically secure. And inter-node communication is still in clear text.
Authentication determines which nodes are allowed to communicate with each
other. In a network of different Erlang nodes, it is built into the system at
the lowest possible level. All nodes use a magic cookie, which is an Erlang
atom, when connecting another node.
During the connection setup, after node names have been exchanged, the magic
cookies the nodes present to each other are compared. If they do not match, the
connection is rejected. The cookies themselves are never transferred, instead
they are compared using hashed challenges, although not in a cryptographically
secure manner.
At start-up, a node has a random atom assigned as its default magic cookie and
the cookie of other nodes is assumed to be nocookie. The first action of the
Erlang network authentication server (auth) is then to search for a file named
.erlang.cookie in the user's home directory and then in
filename:basedir(user_config, "erlang"). If none
of the files exist, a .erlang.cookie file is created in the user's home
directory. The UNIX permissions mode of the file is set to octal 400 (read-only
by user) and its content is a random string. An atom Cookie is created from
the contents of the file and the cookie of the local node is set to this using
erlang:set_cookie(Cookie). This sets the default cookie that the local node
will use for all other nodes.
Thus, groups of users with identical cookie files get Erlang nodes that can
communicate freely since they use the same magic cookie. Users who want to run
nodes where the cookie files are on different file systems must make certain
that their cookie files are identical.
For a node Node1 using magic cookie Cookie to be able to connect to, and to
accept a connection from, another node Node2 that uses a different cookie
DiffCookie, the function erlang:set_cookie(Node2, DiffCookie) must first be
called at Node1. Distributed systems with multiple home directories (differing
cookie files) can be handled in this way.
Note
With this setup Node1 and Node2 agree on which cookie to use: Node1 uses
its explicitly configured DiffCookie for Node2, and Node2 uses its
default cookie DiffCookie.
You can also use a DiffCookie that neither Node1 nor Node2 has as its
default cookie, if you also call erlang:set_cookie(Node1, DiffCookie) in
Node2 before establishing connection
Because node names are exchanged during connection setup before cookies are
selected, connection setup works regardless of which node that initiates it.
Note that to configure Node1 to use Node2's default cookie when
communicating with Node2, and vice versa results in a broken configuration
(if the cookies are different) because then both nodes use the other node's
(differing) cookie.
The default when a connection is established between two nodes, is to
immediately connect all other visible nodes as well. This way, there is always a
fully connected network. If there are nodes with different cookies, this method
can be inappropriate (since it may not be feasible to configure different
cookies for all possible nodes) and the command-line flag -connect_all false
must be set, see the erl executable in ERTS.
The magic cookie of the local node can be retrieved by calling
erlang:get_cookie().

 Distribution BIFs

Here are some BIFs that are useful for distributed programming:
	disconnect_node(Node) - Forces the
disconnection of a node.

	erlang:get_cookie/0 - Returns the magic cookie of the current
node.

	erlang:get_cookie(Node) - Returns the
magic cookie for node Node.

	is_alive/0 - Returns true if the runtime system is a node and
can connect to other nodes, false otherwise.

	monitor_node(Node, Bool) - Monitors the
status of Node. A message{nodedown, Node} is received if the
connection to it is lost.

	node/0 - Returns the name of the current node. Allowed in guards.

	node(Arg) - Returns the node where Arg, a pid,
reference, or port, is located.

	nodes/0 - Returns a list of all visible nodes this node is connected to.

	nodes(Arg) - Depending on Arg, this function can
return a list not only of visible nodes, but also hidden nodes and
previously known nodes, and so on.

	erlang:set_cookie(Cookie) - Sets the
magic cookie, Cookie to use when connecting all nodes that have no
explicit cookie set with erlang:set_cookie/2.

	erlang:set_cookie(Node, Cookie) - Sets
the magic cookie used when connecting Node. If Node is the
current node, Cookie is used when connecting all nodes that have
no explicit cookie set with this function.

	spawn_link(Node, Fun) - Creates a process at a remote node.

	spawn_opt(Node, Fun, Opts) - Creates a process at
a remote node.

	spawn_link(Node, Module, Name, Args) -
Creates a process at a remote node.

	spawn_opt(Node, Module, Name, Args, Opts) - Creates
a process at a remote node.

Table: Distribution BIFs

 Distribution Command-Line Flags

Examples of command-line flags used for distributed programming (for more
information, see the erl executable in ERTS):
	Command-Line Flag	Description
	-connect_all false	Only explicit connection setups are used.
	-hidden	Makes a node into a hidden node.
	-name Name	Makes a runtime system into a node, using long node names.
	-setcookie Cookie	Same as calling erlang:set_cookie(Cookie).
	-setcookie Node Cookie	Same as calling erlang:set_cookie(Node, Cookie).
	-sname Name	Makes a runtime system into a node, using short node names.

Table: Distribution Command-Line Flags

 Distribution Modules

Examples of modules useful for distributed programming in the Kernel application:
	Module	Description
	global	A global name registration facility.
	global_group	Grouping nodes to global name registration groups.
	net_adm	Various Erlang net administration routines.
	net_kernel	Erlang networking kernel.

Table: Kernel Modules Useful For Distribution.
In the STDLIB application:
	Module	Description
	peer	Start and control of peer nodes.

Table: STDLIB Modules Useful For Distribution.

Compilation and Code Loading

How code is compiled and loaded is not a language issue, but is
system-dependent. This section describes compilation and code loading in
Erlang/OTP with references to relevant parts of the documentation.

 Compilation

Erlang programs must be compiled to object code. The compiler can generate a
new file that contains the object code. The current abstract machine, which runs
the object code, is called BEAM, therefore the object files get the suffix
.beam. The compiler can also generate a binary which can be loaded directly.
The compiler is located in the module compile in Compiler.
compile:file(Module)
compile:file(Module, Options)
The Erlang shell understands the command c(Module), which both compiles and
loads Module.
There is also a module make, which provides a set of functions similar to the
UNIX type Make functions, see module make in Tools.
The compiler can also be accessed from the OS prompt using the
erl executable in ERTS.
% erl -compile Module1...ModuleN
% erl -make
The erlc program provides way to compile modules from the OS
shell, see the erlc executable in ERTS. It
understands a number of flags that can be used to define macros, add search
paths for include files, and more.
% erlc <flags> File1.erl...FileN.erl

 Code Loading

The object code must be loaded into the Erlang runtime system. This is handled
by the code server, see module code in Kernel.
The code server loads code according to a code loading strategy, which is either
interactive (default) or embedded. In interactive mode, code is searched for
in a code path and loaded when first referenced. In embedded mode, code is
loaded at start-up according to a boot script. This is described in
System Principles .

 Code Replacement

Erlang supports change of code in a running system. Code replacement is done on
the module level.
The code of a module can exist in two variants in a system: current and old.
When a module is loaded into the system for the first time, the code becomes
'current'. If then a new instance of the module is loaded, the code of the
previous instance becomes 'old' and the new instance becomes 'current'.
Both old and current code is valid, and can be evaluated concurrently. Fully
qualified function calls always refer to current code. Old code can still be
evaluated because of processes lingering in the old code.
If a third instance of the module is loaded, the code server removes (purges)
the old code and any processes lingering in it is terminated. Then the third
instance becomes 'current' and the previously current code becomes 'old'.
To change from old code to current code, a process must make a fully qualified
function call.
Example:
-module(m).
-export([loop/0]).

loop() ->
 receive
 code_switch ->
 m:loop();
 Msg ->
 ...
 loop()
 end.
To make the process change code, send the message code_switch to it. The
process then makes a fully qualified call to m:loop() and changes to current
code. Notice that m:loop/0 must be exported.
For code replacement of funs to work, use the syntax
fun Module:FunctionName/Arity.

 Running a Function When a Module is Loaded

The -on_load() directive names a function that is to be run automatically when
a module is loaded.
Its syntax is as follows:
-on_load(Name/0).
It is not necessary to export the function. It is called in a freshly spawned
process (which terminates as soon as the function returns).
The function must return ok if the module is to become the new current code
for the module and become callable.
Returning any other value or generating an exception causes the new code to be
unloaded. If the return value is not an atom, a warning error report is sent to
the error logger.
If there already is current code for the module, that code will remain current
and can be called until the on_load function has returned. If the on_load
function fails, the current code (if any) will remain current. If there is no
current code for a module, any process that makes an external call to the module
before the on_load function has finished will be suspended until the on_load
function have finished.
Change
Before Erlang/OTP 19, if the on_load function failed, any previously current
code would become old, essentially leaving the system without any working and
reachable instance of the module.
In embedded mode, first all modules are loaded. Then all on_load functions are
called. The system is terminated unless all of the on_load functions return
ok.
Example:
-module(m).
-on_load(load_my_nifs/0).

load_my_nifs() ->
 NifPath = ..., %Set up the path to the NIF library.
 Info = ..., %Initialize the Info term
 erlang:load_nif(NifPath, Info).
If the call to erlang:load_nif/2 fails, the module is unloaded and a warning
report is sent to the error loader.

Ports and Port Drivers

Examples of how to use ports and port drivers are provided in
Interoperability Tutorial.
For information about the BIFs mentioned, see module erlang in
ERTS.

 Ports

Ports provide the basic mechanism for communication with the external world,
from Erlang's point of view. They provide a byte-oriented interface to an
external program. When a port has been created, Erlang can communicate with it
by sending and receiving lists of bytes, including binaries.
The Erlang process creating a port is said to be the port owner, or the
connected process of the port. All communication to and from the port must go
through the port owner. If the port owner terminates, so does the port (and the
external program, if it is written correctly).
The external program resides in another OS process. By default, it reads from
standard input (file descriptor 0) and writes to standard output (file
descriptor 1). The external program is to terminate when the port is closed.

 Port Drivers

It is possible to write a driver in C according to certain principles and
dynamically link it to the Erlang runtime system. The linked-in driver looks
like a port from the Erlang programmer's point of view and is called a port
driver.
Warning
An erroneous port driver causes the entire Erlang runtime system to leak
memory, hang or crash.
For information about port drivers, see:
	erl_driver in ERTS
	driver_entry in ERTS
	erl_ddll in Kernel

 Port BIFs

To create a port, call open_port(PortName, PortSettings). It returns a port identifier Port
as the result of opening the new port. Messages can be sent to
and received from a port identifier, just like a PID. Port
identifiers can also be linked to using link/1, or
registered under a name using register/2.
PortName is usually a tuple {spawn,Command}, where the string Command is
the name of the external program. The external program runs outside the Erlang
workspace, unless a port driver with the name Command is found. If Command
is found, that driver is started.
PortSettings is a list of settings (options) for the port. The list typically
contains at least a tuple {packet,N}, which specifies that data sent between
the port and the external program are preceded by an N-byte length indicator.
Valid values for N are 1, 2, or 4. If binaries are to be used instead of lists
of bytes, the option binary must be included.
The port owner Pid can communicate with the port Port by sending and
receiving messages. (In fact, any process can send the messages to the port, but
the port owner must be identified in the message).
Messages sent to ports are delivered asynchronously.
Change
Before Erlang/OTP 16, messages to ports were delivered synchronously.
In the following examples, Data must be an I/O list. An I/O list is
a binary or a (possibly deep) list of binaries or integers in the
range 0 through 255.
The following messages can be sent to a port:
	{Pid,{command,Data}} - Sends Data to the port.

	{Pid,close} - Closes the port. Unless the port is already
 closed, the port replies with {Port,closed} when all buffers
 have been flushed and the port really closes.

	{Pid,{connect,NewPid}} - Sets the port owner of Port to
 NewPid. Unless the port is already closed, the port replies
 with{Port,connected} to the old port owner. Note that the old
 port owner is still linked to the port, but the new port owner is
 not.

Here follows the possible messages that can be received from a port. They
are sent to the process that owns the port:
	{Port,{data,Data}} - Data is received from the external program.

	{Port,closed} - Reply to Port ! {Pid,close}.

	{Port,connected} - Reply to Port ! {Pid,{connect,NewPid}}.

	{'EXIT',Port,Reason} - If the port has terminated for some
 reason.

Instead of sending and receiving messages, there are also a number of BIFs that
can be used:
	port_command(Port, Data) - Sends Data to the
port.

	port_close(Port) - Closes the port.

	port_connect(Port, NewPid) - Sets the port
owner of Portto NewPid. The old port owner Pid stays linked to
the port and must call unlink(Port) if this is not
desired.

	erlang:port_info(Port, Item) - Returns
information as specified by Item.

	erlang:ports() - Returns a list of all ports
on the current node.

There also exist a few additional BIFs that apply to port drivers:
	port_control/3
	erlang:port_call/3.

Introduction

 Purpose

"Premature optimization is the root of all evil" (D.E. Knuth)

Efficient code can be well-structured and clean, based on a sound
overall architecture and sound algorithms. Efficient code can be
highly implementation-dependent code that bypasses documented
interfaces and takes advantage of obscure quirks.
Ideally, your code only contains the first type of efficient code. If that turns
out to be too slow, profile the application to find out where the performance
bottlenecks are and optimize only the bottlenecks. Let other code stay as clean
as possible.
This Efficiency Guide cannot really teach you how to write efficient code. It
can give you a few pointers about what to avoid and what to use, and some
understanding of how certain language features are implemented. This guide does
not include general tips about optimization that works in any language, such as
moving common calculations out of loops.

 Prerequisites

It is assumed that you are familiar with the Erlang programming language and the
OTP concepts.

Common Caveats

This section lists a few constructs to watch out for.

 Operator ++

The ++ operator copies its left-hand side operand. That is clearly
seen if we do our own implementation in Erlang:
my_plus_plus([H|T], Tail) ->
 [H|my_plus_plus(T, Tail)];
my_plus_plus([], Tail) ->
 Tail.
We must be careful how we use ++ in a loop. First is how not to use it:
DO NOT
naive_reverse([H|T]) ->
 naive_reverse(T) ++ [H];
naive_reverse([]) ->
 [].
As the ++ operator copies its left-hand side operand, the growing
result is copied repeatedly, leading to quadratic complexity.
On the other hand, using ++ in loop like this is perfectly fine:
OK
naive_but_ok_reverse(List) ->
 naive_but_ok_reverse(List, []).

naive_but_ok_reverse([H|T], Acc) ->
 naive_but_ok_reverse(T, [H] ++ Acc);
naive_but_ok_reverse([], Acc) ->
 Acc.
Each list element is copied only once. The growing result Acc is the right-hand
side operand, which it is not copied.
Experienced Erlang programmers would probably write as follows:
DO
vanilla_reverse([H|T], Acc) ->
 vanilla_reverse(T, [H|Acc]);
vanilla_reverse([], Acc) ->
 Acc.
In principle, this is slightly more efficient because the list element [H]
is not built before being copied and discarded. In practice, the compiler
rewrites [H] ++ Acc to [H|Acc].

 Timer Module

Creating timers using erlang:send_after/3 and erlang:start_timer/3, is more
efficient than using the timers provided by the timer module in STDLIB.
The timer module uses a separate process to manage the
timers. Before Erlang/OTP 25, this management overhead was substantial
and increasing with the number of timers, especially when they were
short-lived, so the timer server process could easily become
overloaded and unresponsive. In Erlang/OTP 25, the timer module was
improved by removing most of the management overhead and the resulting
performance penalty. Still, the timer server remains a single process,
and it may at some point become a bottleneck of an application.
The functions in the timer module that do not manage timers (such as
timer:tc/3 or timer:sleep/1), do not call the timer-server process and are
therefore harmless.

 Accidental Copying and Loss of Sharing

When spawning a new process using a fun, one can accidentally copy more data to
the process than intended. For example:
DO NOT
accidental1(State) ->
 spawn(fun() ->
 io:format("~p\n", [State#state.info])
 end).
The code in the fun will extract one element from the record and print it. The
rest of the state record is not used. However, when the spawn/1
function is executed, the entire record is copied to the newly created process.
The same kind of problem can happen with a map:
DO NOT
accidental2(State) ->
 spawn(fun() ->
 io:format("~p\n", [map_get(info, State)])
 end).
In the following example (part of a module implementing the gen_server
behavior) the created fun is sent to another process:
DO NOT
handle_call(give_me_a_fun, _From, State) ->
 Fun = fun() -> State#state.size =:= 42 end,
 {reply, Fun, State}.
How bad that unnecessary copy is depends on the contents of the record or the
map.
For example, if the state record is initialized like this:
init1() ->
 #state{data=lists:seq(1, 10000)}.
a list with 10000 elements (or about 20000 heap words) will be copied to the
newly created process.
An unnecessary copy of 10000 element list can be bad enough, but it can get even
worse if the state record contains shared subterms. Here is a simple example
of a term with a shared subterm:
{SubTerm, SubTerm}
When a term is copied to another process, sharing of subterms will be lost and
the copied term can be many times larger than the original term. For example:
init2() ->
 SharedSubTerms = lists:foldl(fun(_, A) -> [A|A] end, [0], lists:seq(1, 15)),
 #state{data=Shared}.
In the process that calls init2/0, the size of the data field in the state
record will be 32 heap words. When the record is copied to the newly created
process, sharing will be lost and the size of the copied data field will be
131070 heap words. More details about
loss off sharing are found in a later
section.
To avoid the problem, outside of the fun extract only the fields of the record
that are actually used:
DO
fixed_accidental1(State) ->
 Info = State#state.info,
 spawn(fun() ->
 io:format("~p\n", [Info])
 end).
Similarly, outside of the fun extract only the map elements that are actually
used:
DO
fixed_accidental2(State) ->
 Info = map_get(info, State),
 spawn(fun() ->
 io:format("~p\n", [Info])
 end).

 list_to_atom/1

Atoms are not garbage-collected. Once an atom is created, it is never removed.
The emulator terminates if the limit for the number of atoms (1,048,576 by
default) is reached.
Therefore, converting arbitrary input strings to atoms can be dangerous in a
system that runs continuously. If only certain well-defined atoms are allowed as
input, list_to_existing_atom/1 or
binary_to_existing_atom/1 can be used
to guard against a denial-of-service attack. (All atoms that are allowed must
have been created earlier, for example, by using all of them in a module
and loading that module.)
Using list_to_atom/1 to construct an atom that
is passed to apply/3 is quite expensive.
DO NOT
apply(list_to_atom("some_prefix"++Var), foo, Args)

 length/1

The time for calculating the length of a list is proportional to the length of
the list, as opposed to tuple_size/1,
byte_size/1, and bit_size/1, which all
execute in constant time.
Normally, there is no need to worry about the speed of length/1,
because it is efficiently implemented in C. In time-critical code, you might
want to avoid it if the input list could potentially be very long.
Some uses of length/1 can be replaced by matching. For example,
the following code:
foo(L) when length(L) >= 3 ->
 ...
can be rewritten to:
foo([_,_,_|_]=L) ->
 ...
One slight difference is that length(L) fails if L is an
improper list, while the pattern in the second code fragment accepts an improper
list.

 setelement/3

setelement/3 copies the tuple it modifies. Therefore,
updating a tuple in a loop using setelement/3 creates a new
copy of the tuple every time.
There is one exception to the rule that the tuple is copied. If the compiler
clearly can see that destructively updating the tuple would give the same result
as if the tuple was copied, the call to setelement/3 is
replaced with a special destructive setelement instruction. In the following
code sequence, the first setelement/3 call copies the tuple
and modifies the ninth element:
multiple_setelement(T0) when tuple_size(T0) =:= 9 ->
 T1 = setelement(9, T0, bar),
 T2 = setelement(7, T1, foobar),
 setelement(5, T2, new_value).
The two following setelement/3 calls modify the tuple in
place.
For the optimization to be applied, all the following conditions must be true:
	The tuple argument must be known to be a tuple of a known size.
	The indices must be integer literals, not variables or expressions.
	The indices must be given in descending order.
	There must be no calls to another function in between the calls to
setelement/3.
	The tuple returned from one setelement/3 call must only be
used in the subsequent call to setelement/3.

If the code cannot be structured as in the multiple_setelement/1 example, the
best way to modify multiple elements in a large tuple is to convert the tuple to
a list, modify the list, and convert it back to a tuple.

 size/1

size/1 returns the size for both tuples and binaries.
Using the BIFs tuple_size/1 and
byte_size/1 gives the compiler and the runtime system more
opportunities for optimization. Another advantage is that those BIFs give Dialyzer
more type information.

 Using NIFs

Rewriting Erlang code to a NIF to make it faster should be seen as a last
resort.
Doing too much work in each NIF call will
degrade responsiveness of the VM. Doing too
little work can mean that the gain of the faster processing in the NIF is eaten
up by the overhead of calling the NIF and checking the arguments.
Be sure to read about Long-running NIFs
before writing a NIF.

Constructing and Matching Binaries

This section gives a few examples on how to handle binaries in an efficient way.
The sections that follow take an in-depth look at how binaries are implemented
and how to best take advantages of the optimizations done by the compiler and
runtime system.
Binaries can be efficiently built in the following way:
DO
my_list_to_binary(List) ->
 my_list_to_binary(List, <<>>).

my_list_to_binary([H|T], Acc) ->
 my_list_to_binary(T, <<Acc/binary,H>>);
my_list_to_binary([], Acc) ->
 Acc.
Appending data to a binary as in the example is efficient because it is
specially optimized by the runtime system to avoid copying the Acc binary
every time.
Prepending data to a binary in a loop is not efficient:
DO NOT
rev_list_to_binary(List) ->
 rev_list_to_binary(List, <<>>).

rev_list_to_binary([H|T], Acc) ->
 rev_list_to_binary(T, <<H,Acc/binary>>);
rev_list_to_binary([], Acc) ->
 Acc.
This is not efficient for long lists because the Acc binary is copied every
time. One way to make the function more efficient is like this:
DO NOT
rev_list_to_binary(List) ->
 rev_list_to_binary(lists:reverse(List), <<>>).

rev_list_to_binary([H|T], Acc) ->
 rev_list_to_binary(T, <<Acc/binary,H>>);
rev_list_to_binary([], Acc) ->
 Acc.
Another way to avoid copying the binary each time is like this:
DO
rev_list_to_binary([H|T]) ->
 RevTail = rev_list_to_binary(T),
 <<RevTail/binary,H>>;
rev_list_to_binary([]) ->
 <<>>.
Note that in each of the DO examples, the binary to be appended to is always
given as the first segment.
Binaries can be efficiently matched in the following way:
DO
my_binary_to_list(<<H,T/binary>>) ->
 [H|my_binary_to_list(T)];
my_binary_to_list(<<>>) -> [].

 How Binaries are Implemented

Internally, binaries and bitstrings are implemented in the same way. In this
section, they are called binaries because that is what they are called in the
emulator source code.
Four types of binary objects are available internally:
	Two are containers for binary data and are called:
	Refc binaries (short for reference-counted binaries)
	Heap binaries

	Two are merely references to a part of a binary and are called:
	sub binaries
	match contexts

Change
In Erlang/OTP 27, the handling of binaries and bitstrings were
rewritten. To fully leverage those changes in the run-time system,
the compiler needs to be updated, which is planned for a future
release.
Since, practically speaking, not much have changed from an efficiency
and optimization perspective, the following description has not yet
been updated to describe the implementation in Erlang/OTP 27.

 Refc Binaries

Refc binaries consist of two parts:
	An object stored on the process heap, called a ProcBin
	The binary object itself, stored outside all process heaps

The binary object can be referenced by any number of ProcBins from any number of
processes. The object contains a reference counter to keep track of the number
of references, so that it can be removed when the last reference disappears.
All ProcBin objects in a process are part of a linked list, so that the garbage
collector can keep track of them and decrement the reference counters in the
binary when a ProcBin disappears.

 Heap Binaries

Heap binaries are small binaries, up to 64 bytes, and are stored directly on the
process heap. They are copied when the process is garbage-collected and when
they are sent as a message. They do not require any special handling by the
garbage collector.

 Sub Binaries

The reference objects sub binaries and match contexts can reference part of
a refc binary or heap binary.
 A sub binary is created by
split_binary/2 and when a binary is matched out in a
binary pattern. A sub binary is a reference into a part of another binary (refc
or heap binary, but never into another sub binary). Therefore, matching out a
binary is relatively cheap because the actual binary data is never copied.

 Match Context

A match context is similar to a sub binary, but is optimized for binary
matching. For example, it contains a direct pointer to the binary data. For each
field that is matched out of a binary, the position in the match context is
incremented.
The compiler tries to avoid generating code that creates a sub binary, only to
shortly afterwards create a new match context and discard the sub binary.
Instead of creating a sub binary, the match context is kept.
The compiler can only do this optimization if it knows that the match context
will not be shared. If it would be shared, the functional properties (also
called referential transparency) of Erlang would break.

 Constructing Binaries

Appending to a binary or bitstring in the following way is specially optimized
to avoid copying the binary:
<<Binary/binary, ...>>
%% - OR -
<<Binary/bitstring, ...>>
This optimization is applied by the runtime system in a way that makes it
effective in most circumstances (for exceptions, see
Circumstances That Force Copying). The
optimization in its basic form does not need any help from the compiler.
However, the compiler add hints to the runtime system when it is safe to apply
the optimization in a more efficient way.
Change
The compiler support for making the optimization more efficient was added in
Erlang/OTP 26.
To explain how the basic optimization works, let us examine the following code
line by line:
Bin0 = <<0>>, %% 1
Bin1 = <<Bin0/binary,1,2,3>>, %% 2
Bin2 = <<Bin1/binary,4,5,6>>, %% 3
Bin3 = <<Bin2/binary,7,8,9>>, %% 4
Bin4 = <<Bin1/binary,17>>, %% 5 !!!
{Bin4,Bin3} %% 6
	Line 1 (marked with the %% 1 comment), assigns a
heap binary to the Bin0 variable.

	Line 2 is an append operation. As Bin0 has not been involved in an append
operation, a new refc binary is created and
the contents of Bin0 is copied into it. The ProcBin part of the refc
binary has its size set to the size of the data stored in the binary, while
the binary object has extra space allocated. The size of the binary object is
either twice the size of Bin1 or 256, whichever is larger. In this case it
is 256.

	Line 3 is more interesting. Bin1 has been used in an append operation, and
it has 252 bytes of unused storage at the end, so the 3 new bytes are stored
there.

	Line 4. The same applies here. There are 249 bytes left, so there is no
problem storing another 3 bytes.

	Line 5. Here something interesting happens. Notice that the result is not
appended to the previous result in Bin3, but to Bin1. It is expected that
Bin4 will be assigned the value <<0,1,2,3,17>>. It is also expected that
Bin3 will retain its value (<<0,1,2,3,4,5,6,7,8,9>>). Clearly, the runtime
system cannot write byte 17 into the binary, because that would change the
value of Bin3 to <<0,1,2,3,4,17,6,7,8,9>>.
To ensure that the value of Bin3 is retained, the runtime system copies
the contents of Bin1 to a new refc binary before storing the 17 byte.
Here is not explained how the runtime system can know that it is not allowed
to write into Bin1; it is left as an exercise to the curious reader to
figure out how it is done by reading the emulator sources, primarily
erl_bits.c.

 Compiler Support For Constructing Binaries

Change
The compiler support for making the optimization more efficient was added in
Erlang/OTP 26.
In the example in the previous section, it was shown that the runtime system can
handle an append operation to a heap binary by copying it to a refc binary (line
2), and also handle an append operation to a previous version of the binary by
copying it (line 5). The support for doing that does not come for free. For
example, to make it possible to know when it is necessary to copy the binary,
for every append operation, the runtime system must create a sub binary.
When the compiler can determine that none of those situations need to be handled
and that the append operation cannot possibly fail, the compiler generates code
that causes the runtime system to apply a more efficient variant of the
optimization.
Example:
-module(repack).
-export([repack/1]).

repack(Bin) when is_binary(Bin) ->
 repack(Bin, <<>>).

repack(<<C:8,T/binary>>, Result) ->
 repack(T, <<Result/binary,C:16>>);
repack(<<>>, Result) ->
 Result.
The repack/2 function only keeps a single version of the binary, so there is
never any need to copy the binary. The compiler rewrites the creation of the
empty binary in repack/1 to instead create a refc binary with 256 bytes
already reserved; thus, the append operation in repack/2 never needs to handle
a binary not prepared for appending.

 Circumstances That Force Copying

The optimization of the binary append operation requires that there is a
single ProcBin and a single reference to the ProcBin for the binary. The
reason is that the binary object can be moved (reallocated) during an append
operation, and when that happens, the pointer in the ProcBin must be updated. If
there would be more than one ProcBin pointing to the binary object, it would not
be possible to find and update all of them.
Therefore, certain operations on a binary mark it so that any future append
operation will be forced to copy the binary. In most cases, the binary object
will be shrunk at the same time to reclaim the extra space allocated for
growing.
When appending to a binary as follows, only the binary returned from the latest
append operation will support further cheap append operations:
Bin = <<Bin0,...>>
In the code fragment in the beginning of this section, appending to Bin will
be cheap, while appending to Bin0 will force the creation of a new binary and
copying of the contents of Bin0.
If a binary is sent as a message to a process or port, the binary will be shrunk
and any further append operation will copy the binary data into a new binary.
For example, in the following code fragment Bin1 will be copied in the third
line:
Bin1 = <<Bin0,...>>,
PortOrPid ! Bin1,
Bin = <<Bin1,...>> %% Bin1 will be COPIED
The same happens if you insert a binary into an Ets table, send it to a port
using erlang:port_command/2, or pass it to
enif_inspect_binary in a NIF.
Matching a binary will also cause it to shrink and the next append operation
will copy the binary data:
Bin1 = <<Bin0,...>>,
<<X,Y,Z,T/binary>> = Bin1,
Bin = <<Bin1,...>> %% Bin1 will be COPIED
The reason is that a match context contains a
direct pointer to the binary data.
If a process simply keeps binaries (either in "loop data" or in the process
dictionary), the garbage collector can eventually shrink the binaries. If only
one such binary is kept, it will not be shrunk. If the process later appends to
a binary that has been shrunk, the binary object will be reallocated to make
place for the data to be appended.

 Matching Binaries

Let us revisit the example in the beginning of the previous section:
DO
my_binary_to_list(<<H,T/binary>>) ->
 [H|my_binary_to_list(T)];
my_binary_to_list(<<>>) -> [].
The first time my_binary_to_list/1 is called, a
match context is created. The match context
points to the first byte of the binary. 1 byte is matched out and the match
context is updated to point to the second byte in the binary.
At this point it would make sense to create a
sub binary, but in this particular example the
compiler sees that there will soon be a call to a function (in this case, to
my_binary_to_list/1 itself) that immediately will create a new match context
and discard the sub binary.
Therefore my_binary_to_list/1 calls itself with the match context instead of
with a sub binary. The instruction that initializes the matching operation
basically does nothing when it sees that it was passed a match context instead
of a binary.
When the end of the binary is reached and the second clause matches, the match
context will simply be discarded (removed in the next garbage collection, as
there is no longer any reference to it).
To summarize, my_binary_to_list/1 only needs to create one match context and
no sub binaries.
Notice that the match context in my_binary_to_list/1 was discarded when the
entire binary had been traversed. What happens if the iteration stops before it
has reached the end of the binary? Will the optimization still work?
after_zero(<<0,T/binary>>) ->
 T;
after_zero(<<_,T/binary>>) ->
 after_zero(T);
after_zero(<<>>) ->
 <<>>.
Yes, it will. The compiler will remove the building of the sub binary in the
second clause:
...
after_zero(<<_,T/binary>>) ->
 after_zero(T);
...
But it will generate code that builds a sub binary in the first clause:
after_zero(<<0,T/binary>>) ->
 T;
...
Therefore, after_zero/1 builds one match context and one sub binary (assuming
it is passed a binary that contains a zero byte).
Code like the following will also be optimized:
all_but_zeroes_to_list(Buffer, Acc, 0) ->
 {lists:reverse(Acc),Buffer};
all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
 all_but_zeroes_to_list(T, Acc, Remaining-1);
all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
 all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).
The compiler removes building of sub binaries in the second and third clauses,
and it adds an instruction to the first clause that converts Buffer from a
match context to a sub binary (or do nothing if Buffer is a binary already).
But in more complicated code, how can one know whether the optimization is
applied or not?

 Option bin_opt_info

Use the bin_opt_info option to have the compiler print a lot of information
about binary optimizations. It can be given either to the compiler or erlc:
erlc +bin_opt_info Mod.erl
or passed through an environment variable:
export ERL_COMPILER_OPTIONS=bin_opt_info
Notice that the bin_opt_info is not meant to be a permanent option added to
your Makefiles, because all messages that it generates cannot be eliminated.
Therefore, passing the option through the environment is in most cases the most
practical approach.
The warnings look as follows:
./efficiency_guide.erl:60: Warning: NOT OPTIMIZED: binary is returned from the function
./efficiency_guide.erl:62: Warning: OPTIMIZED: match context reused
To make it clearer exactly what code the warnings refer to, the warnings in the
following examples are inserted as comments after the clause they refer to, for
example:
after_zero(<<0,T/binary>>) ->
 %% BINARY CREATED: binary is returned from the function
 T;
after_zero(<<_,T/binary>>) ->
 %% OPTIMIZED: match context reused
 after_zero(T);
after_zero(<<>>) ->
 <<>>.
The warning for the first clause says that the creation of a sub binary cannot
be delayed, because it will be returned. The warning for the second clause says
that a sub binary will not be created (yet).

 Unused Variables

The compiler figures out if a variable is unused. The same code is generated for
each of the following functions:
count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
count1(<<>>, Count) -> Count.

count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
count2(<<>>, Count) -> Count.

count3(<<_H,T/binary>>, Count) -> count3(T, Count+1);
count3(<<>>, Count) -> Count.
In each iteration, the first 8 bits in the binary will be skipped, not matched
out.

Maps

This guide to using maps efficiently starts with a brief section on the choice
between records or maps, followed by three sections giving concrete (but brief)
advice on using maps as an alternative to records, as dictionaries, and as sets.
The remaining sections dig deeper, looking at how maps are implemented, the map
syntax, and finally the functions in the maps module.

Terminology used in this chapter:
	A map with at most 32 elements will informally be called a small map.
	A map with more than 32 elements will informally be called a large map.

 Maps or Records?

If the advice in this chapter is followed, the performance of records compared
to using small maps instead of records is expected to be similar. Therefore, the
choice between records and maps should be based on the desired properties of the
data structure and not performance.
The advantages of records compared to maps are:
	If the name of a record field is misspelled, there will be a compilation
error. If a map key is misspelled, the compiler will give no warning and
program will fail in some way when it is run.
	Records will use slightly less memory than maps, and performance is expected
to be slightly better than maps in most circumstances.

The disadvantage of records compared to maps is that if a new field is added to
a record, all code that uses that record must be recompiled. Because of that, it
is recommended to only use records within a unit of code that can easily be
recompiled all at once, for example within a single application or single
module.

 Using Maps as an Alternative to Records

	Use the map syntax instead of the functions in the maps module.

	Avoid having more than 32 elements in the map. As soon as there are more than
32 elements in the map, it will require more memory and keys can no longer be
shared with other instances of the map.

	When creating a new map, always create it with all keys that will ever be
used. To maximize sharing of keys (thus minimizing memory use), create a
single function that constructs the map using the map syntax and always use
it.

	Always update the map using the := operator (that is, requiring that an
element with that key already exists). The := operator is slightly more
efficient, and it helps catching mispellings of keys.

	Whenever possible, match multiple map elements at once.

	Whenever possible, update multiple map elements at once.

	Avoid default values and the maps:get/3 function. If there are default
values, sharing of keys between different instances of the map will be less
effective, and it is not possible to match multiple elements having default
values in one go.

	To avoid having to deal with a map that may lack some keys, maps:merge/2 can
efficiently add multiple default values. For example:
DefaultMap = #{shoe_size => 42, editor => emacs},
MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

 Using Maps as Dictionaries

Using a map as a dictionary implies the following usage pattern:
	Keys are usually variables not known at compile-time.
	There can be any number of elements in the map.
	Usually, no more than one element is looked up or updated at once.

Given that usage pattern, the difference in performance between using the map
syntax and the maps module is usually small. Therefore, which one to use is
mostly a matter of taste.
Maps are usually the most efficient dictionary data structure, with a few
exceptions:
	If it is necessary to frequently convert a dictionary to a sorted list, or
from a sorted list to a dictionary, using gb_trees can be a better choice.
	If all keys are non-negative integers, the array module can be a better
choice.

 Using Maps as Sets

Starting in OTP 24, the sets module has an option to represent sets as maps.
Examples:
1> sets:new([{version,2}]).
#{}
2> sets:from_list([x,y,z], [{version,2}]).
#{x => [],y => [],z => []}
sets backed by maps is generally the most efficient set representation, with a
few possible exceptions:
	ordsets:intersection/2 can be more efficient than sets:intersection/2. If
the intersection operation is frequently used and operations that operate on a
single element in a set (such as is_element/2) are avoided, ordsets can
be a better choice than sets.
	If the intersection operation is frequently used and operations that operate
on a single element in a set (such as is_element/2) must also be efficient,
gb_sets can potentially be a better choice than sets.
	If the elements of the set are integers in a fairly compact range, the set can
be represented as an integer where each bit represents an element in the set.
The union operation is performed by bor and the intersection operation by
band.

 How Maps are Implemented

Internally, maps have two distinct representations depending on the number of
elements in the map. The representation changes when a map grows beyond 32
elements, or when it shrinks to 32 elements or less.
	A map with at most 32 elements has a compact representation, making it
suitable as an alternative to records.
	A map with more than 32 elements is represented as a tree that can be
efficiently searched and updated regardless of how many elements there are.

 How Small Maps are Implemented

A small map looks like this inside the runtime system:
	0	1	2	3		N
	FLATMAP	N	Keys	Value1	...	ValueN

Table: The representation of a small map
	FLATMAP - The tag for a small map (called flat map in the source code
for the runtime system).

	N - The number of elements in the map.

	Keys - A tuple with keys of the map: {Key1,...,KeyN}. The keys are
sorted.

	Value1 - The value corresponding to the first key in the key tuple.

	ValueN - The value corresponding to the last key in the key tuple.

As an example, let us look at how the map #{a => foo, z => bar} is
represented:
	0	1	2	3	4
	FLATMAP	2	{a,z}	foo	bar

Table: #{a => foo, z => bar}
Let us update the map: M#{q => baz}. The map now looks like this:
	0	1	2	3	4	5
	FLATMAP	3	{a,q,z}	foo	baz	bar

Table: #{a => foo, q => baz, z => bar}
Finally, change the value of one element: M#{z := bird}. The map now looks
like this:
	0	1	2	3	4	5
	FLATMAP	3	{a,q,z}	foo	baz	bird

Table: #{a => foo, q => baz, z => bird}
When the value for an existing key is updated, the key tuple is not updated,
allowing the key tuple to be shared with other instances of the map that have
the same keys. In fact, the key tuple can be shared between all maps with the
same keys with some care. To arrange that, define a function that returns a map.
For example:
new() ->
 #{a => default, b => default, c => default}.
Defined like this, the key tuple {a,b,c} will be a global literal. To ensure
that the key tuple is shared when creating an instance of the map, always call
new() and modify the returned map:
 (SOME_MODULE:new())#{a := 42}.
Using the map syntax with small maps is particularly efficient. As long as the
keys are known at compile-time, the map is updated in one go, making the time to
update a map essentially constant regardless of the number of keys updated. The
same goes for matching. (When the keys are variables, one or more of the keys
could be identical, so the operations need to be performed sequentially from
left to right.)
The memory size for a small map is the size of all keys and values plus 5 words.
See Memory for more information about memory sizes.

 How Large Maps are Implemented

A map with more than 32 elements is implemented as a
Hash array mapped trie (HAMT).
A large map can be efficiently searched and updated regardless of the number of
elements in the map.
There is less performance to be gained by matching or updating multiple elements
using the map syntax on a large map compared to a small map. The execution time
is roughly proportional to the number of elements matched or updated.
The storage overhead for a large map is higher than for a small map. For a large
map, the extra number of words besides the keys and values is roughly
proportional to the number of elements. For a map with 33 elements the overhead
is at least 53 heap words according to the formula in
Memory (compared to 5 extra words for a small map
regardless of the number of elements).
When a large map is updated, the updated map and the original map will share
common parts of the HAMT, but sharing will never be as effective as the best
possible sharing of the key tuple for small maps.
Therefore, if maps are used instead of records and it is expected that many
instances of the map will be created, it is more efficient from a memory
standpoint to avoid using large maps (for example, by grouping related map
elements into sub maps to reduce the number of elements).

 Using the Map Syntax

Using the map syntax is usually slightly more efficient than using the
corresponding function in the maps module.
The gain in efficiency for the map syntax is more noticeable for the following
operations that can only be achieved using the map syntax:
	Matching multiple literal keys
	Updating multiple literal keys
	Adding multiple literal keys to a map

For example:
DO
Map = Map1#{x := X, y := Y, z := Z}
DO NOT
Map2 = maps:update(x, X, Map1),
Map3 = maps:update(y, Y, Map2),
Map = maps:update(z, Z, Map3)
If the map is a small map, the first example runs roughly three times as fast.
Note that for variable keys, the elements are updated sequentially from left to
right. For example, given the following update with variable keys:
Map = Map1#{Key1 := X, Key2 := Y, Key3 := Z}
the compiler rewrites it like this to ensure that the updates are applied from
left to right:
Map2 = Map1#{Key1 := X},
Map3 = Map2#{Key2 := Y},
Map = Map3#{Key3 := Z}
If a key is known to exist in a map, using the := operator is slightly more
efficient than using the => operator for a small map.

 Using the Functions in the maps Module

Here follows some notes about most of the functions in the maps module. For
each function, the implementation language (C or Erlang) is stated. The reason
we mention the language is that it gives an hint about how efficient the
function is:
	If a function is implemented in C, it is pretty much impossible to implement
the same functionality more efficiently in Erlang.

	However, it might be possible to beat the maps modules functions implemented
in Erlang, because they are generally implemented in a way that attempts to
make the performance reasonable for all possible inputs.
For example, maps:map/2 iterates over all elements of the map, calling the
mapping fun, collects the updated map elements in a list, and finally converts
the list back to a map using maps:from_list/1. If it is known that at most
one percent of the values in the map will change, it can be more efficient to
update only the changed values.

Note
The implementation details given in this section can change in the future.

 maps:filter/2

maps:filter/2 is implemented in Erlang. It creates a new map using
maps:from_list/1. If it is known that only a minority of the values will be
removed, it can be more efficient to avoid maps:filter/2 and write a function
that will use maps:remove/3 to remove the unwanted values.

 maps:filtermap/2

maps:filtermap/2 is implemented in Erlang. It creates a new map using
maps:from_list/1. See the notes for maps:map/2 and maps:filter/2 for hints
on how to implement a more efficient version.

 maps:find/2

maps:find/2 is implemented in C.
Using the map matching syntax instead of maps:find/2 will be slightly more
efficient since building an {ok,Value} tuple will be avoided.

 maps:get/2

As an optimization, the compiler will rewrite a call to maps:get/2 to a call
to the guard BIF map_get/2. A call to a guard BIF is more
efficient than calls to other BIFs, making the performance similar to using the
map matching syntax.
If the map is small and the keys are constants known at compile-time, using the
map matching syntax will be more efficient than multiple calls to maps:get/2.

 maps:get/3

As an optimization, the compiler will rewrite a call to maps:get/3 to Erlang
code similar to the following:
Result = case Map of
 #{Key := Value} -> Value;
 #{} -> Default
 end
This is reasonably efficient, but if a small map is used as an alternative to
using a record it is often better not to rely on default values as it prevents
sharing of keys, which may in the end use more memory than what you save from
not storing default values in the map.
If default values are nevertheless required, instead of calling maps:get/3
multiple times, consider putting the default values in a map and merging that
map with the other map:
DefaultMap = #{Key1 => Value2, Key2 => Value2, ..., KeyN => ValueN},
MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)
This helps share keys between the default map and the one you applied defaults
to, as long as the default map contains all the keys that will ever be used
and not just the ones with default values. Whether this is faster than calling
maps:get/3 multiple times depends on the size of the map and the number of
default values.
Change
Before OTP 26.0 maps:get/3 was implemented by calling the function instead
of rewriting it as an Erlang expression. It is now slightly faster but can no
longer be traced.

 maps:intersect/2, maps:intersect_with/3

maps:intersect/2 and maps:intersect_with/3 are implemented in Erlang. They
both create new maps using maps:from_list/1.
Note
A map is usually the most efficient way to implement a set, but an exception
is the intersection operation, where ordsets:intersection/2 used on
ordsets can be more efficient than maps:intersect/2 on sets implemented
as maps.

 maps:from_list/1

maps:from_list/1 is implemented in C.

 maps:from_keys/2

maps:from_keys/2 is implemented in C.

 maps:is_key/2

As an optimization, the compiler rewrites calls to maps:is_key/2 to calls to
the guard BIF is_map_key/2. A call to a guard BIF is
more efficient than calls to other BIFs, making the performance similar to using
the map matching syntax.

 maps:iterator/1

maps:iterator/1 is efficiently implemented in C and Erlang.

 maps:keys/1

maps:keys/1 is implemented in C. If the resulting list needs to be ordered,
use lists:sort/1 to sort the result.

 maps:map/2

maps:map/2 is implemented in Erlang. It creates a new map using
maps:from_list/1. If it is known that only a minority of the values will be
updated, it can be more efficient to avoid maps:map/2 and write a function
that will call maps:update/3 to update only the values that have changed.

 maps:merge/2

maps:merge/2 is implemented in C. For small maps, the
key tuple may be shared with any of the argument maps if that argument map
contains all the keys. Literal key tuples are prefered if possible.
Change
The sharing of key tuples by maps:merge/2 was introduced in OTP 26.0. Older
versions always contructed a new key tuple on the callers heap.

 maps:merge_with/3

maps:merge_with/3 is implemented in Erlang. It updates and returns the larger
of the two maps.

 maps:new/0

The compiler rewrites a call to maps:new/0 to using the syntax #{} for
constructing an empty map.

 maps:next/1

maps:next/1 is efficiently implemented in C and Erlang.

 maps:put/3

maps:put/3 is implemented in C.
If the key is known to already exist in the map, maps:update/3 is slightly
more efficient than maps:put/3.
If the keys are constants known at compile-time, using the map update syntax
with the => operator is more efficient than multiple calls to maps:put/3,
especially for small maps.

 maps:remove/2

maps:remove/2 is implemented in C.

 maps:size/1

As an optimization, the compiler rewrites calls to maps:size/1 to calls to the
guard BIF map_size/1. Calls to guard BIFs are more
efficient than calls to other BIFs.

 maps:take/2

maps:take/2 is implemented in C.

 maps:to_list/1

maps:to_list/1 is efficiently implemented in C and Erlang. If the resulting
list needs to be ordered, use lists:sort/1 to sort the result.
Note
Maps are usually more performant than gb_trees, but if it is necessary to
frequently convert to and from sorted lists, gb_trees can be a better
choice.

 maps:update/3

maps:update/3 is implemented in C.
If the keys are constants known at compile-time, using the map update syntax
with the := operator is more efficient than multiple calls to maps:update/3,
especially for small maps.

 maps:values/1

maps:values/1 is implemented in C.

 maps:with/2

maps:with/2 is implemented in Erlang. It creates a new map using
maps:from_list/1.

 maps:without/2

maps:without/2 is implemented in Erlang. It returns a modified copy of the
input map.

List Handling

 Creating a List

Lists can only be built starting from the end and attaching list elements at the
beginning. If you use the ++ operator as follows, a new list is created that
is a copy of the elements in List1, followed by List2:
List1 ++ List2
Looking at how lists:append/2 or ++ would be implemented in plain Erlang,
clearly the first list is copied:
append([H|T], Tail) ->
 [H|append(T, Tail)];
append([], Tail) ->
 Tail.
When recursing and building a list, it is important to ensure that you attach
the new elements to the beginning of the list. In this way, you will build one
list, not hundreds or thousands of copies of the growing result list.
Let us first see how it is not to be done:
DO NOT
bad_fib(N) ->
 bad_fib(N, 0, 1, []).

bad_fib(0, _Current, _Next, Fibs) ->
 Fibs;
bad_fib(N, Current, Next, Fibs) ->
 bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).
Here more than one list is built. In each iteration step a new list is created
that is one element longer than the new previous list.
To avoid copying the result in each iteration, build the list in reverse order
and reverse the list when you are done:
DO
tail_recursive_fib(N) ->
 tail_recursive_fib(N, 0, 1, []).

tail_recursive_fib(0, _Current, _Next, Fibs) ->
 lists:reverse(Fibs);
tail_recursive_fib(N, Current, Next, Fibs) ->
 tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

 List Comprehensions

A list comprehension:
[Expr(E) || E <- List]
is basically translated to a local function:
'lc^0'([E|Tail], Expr) ->
 [Expr(E)|'lc^0'(Tail, Expr)];
'lc^0'([], _Expr) -> [].
If the result of the list comprehension will obviously not be used, a list
will not be constructed. For example, in this code:
[io:put_chars(E) || E <- List],
ok.
or in this code:
case Var of
 ... ->
 [io:put_chars(E) || E <- List];
 ... ->
end,
some_function(...),
the value is not assigned to a variable, not passed to another function, and not
returned. This means that there is no need to construct a list and the compiler
will simplify the code for the list comprehension to:
'lc^0'([E|Tail], Expr) ->
 Expr(E),
 'lc^0'(Tail, Expr);
'lc^0'([], _Expr) -> [].
The compiler also understands that assigning to _ means that the value will
not be used. Therefore, the code in the following example will also be optimized:
_ = [io:put_chars(E) || E <- List],
ok.

 Deep and Flat Lists

lists:flatten/1 builds an entirely new list. It is therefore expensive, and
even more expensive than the ++ operator (which copies its left argument,
but not its right argument).
In the following situations it is unnecessary to call lists:flatten/1:
	When sending data to a port. Ports understand deep lists so there is no reason
to flatten the list before sending it to the port.
	When calling BIFs that accept deep lists, such as
list_to_binary/1 or
iolist_to_binary/1.
	When you know that your list is only one level deep. Use lists:append/1
instead.

Examples:
DO
port_command(Port, DeepList)
DO NOT
port_command(Port, lists:flatten(DeepList))
A common way to send a zero-terminated string to a port is the following:
DO NOT
TerminatedStr = String ++ [0],
port_command(Port, TerminatedStr)
Instead:
DO
TerminatedStr = [String, 0],
port_command(Port, TerminatedStr)
DO
1> lists:append([[1], [2], [3]]).
[1,2,3]
DO NOT
1> lists:flatten([[1], [2], [3]]).
[1,2,3]

 Recursive List Functions

There are two basic ways to write a function that traverses a list and
produces a new list.
The first way is writing a body-recursive function:
%% Add 42 to each integer in the list.
add_42_body([H|T]) ->
 [H + 42 | add_42_body(T)];
add_42_body([]) ->
 [].
The second way is writing a tail-recursive function:
%% Add 42 to each integer in the list.
add_42_tail(List) ->
 add_42_tail(List, []).

add_42_tail([H|T], Acc) ->
 add_42_tail(T, [H + 42 | Acc]);
add_42_tail([], Acc) ->
 lists:reverse(Acc).
In early version of Erlang the tail-recursive function would typically
be more efficient. In modern versions of Erlang, there is usually not
much difference in performance between a body-recursive list function and
tail-recursive function that reverses the list at the end. Therefore,
concentrate on writing beautiful code and forget about the performance
of your list functions. In the time-critical parts of your code,
measure before rewriting your code.
For a thorough discussion about tail and body recursion, see
Erlang's Tail Recursion is Not a Silver Bullet.
Note
This section is about list functions that construct lists. A tail-recursive
function that does not construct a list runs in constant space, while the
corresponding body-recursive function uses stack space proportional to the
length of the list.
For example, a function that sums a list of integers, is not to be written as
follows:
DO NOT
recursive_sum([H|T]) -> H+recursive_sum(T);
recursive_sum([]) -> 0.
Instead:
DO
sum(L) -> sum(L, 0).

sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.

Functions

 Pattern Matching

Pattern matching in function head as well as in case and receive clauses are
optimized by the compiler. With a few exceptions, there is nothing to gain by
rearranging clauses.
One exception is pattern matching of binaries. The compiler does not rearrange
clauses that match binaries. Placing the clause that matches against the empty
binary last is usually slightly faster than placing it first.
The following is a rather unnatural example to show another exception where
rearranging clauses is beneficial:
DO NOT
atom_map1(one) -> 1;
atom_map1(two) -> 2;
atom_map1(three) -> 3;
atom_map1(Int) when is_integer(Int) -> Int;
atom_map1(four) -> 4;
atom_map1(five) -> 5;
atom_map1(six) -> 6.
The problem is the clause with the variable Int. As a variable can match
anything, including the atoms four, five, and six, which the following
clauses also match, the compiler must generate suboptimal code that executes as
follows:
	First, the input value is compared to one, two, and three (using a
single instruction that does a binary search; thus, quite efficient even if
there are many values) to select which one of the first three clauses to
execute (if any).
	If none of the first three clauses match, the fourth clause match as a
variable always matches.
	If the guard test is_integer(Int) succeeds, the fourth
clause is executed.
	If the guard test fails, the input value is compared to four, five, and
six, and the appropriate clause is selected. (There is a function_clause
exception if none of the values matched.)

Rewriting to either:
DO
atom_map2(one) -> 1;
atom_map2(two) -> 2;
atom_map2(three) -> 3;
atom_map2(four) -> 4;
atom_map2(five) -> 5;
atom_map2(six) -> 6;
atom_map2(Int) when is_integer(Int) -> Int.
or:
DO
atom_map3(Int) when is_integer(Int) -> Int;
atom_map3(one) -> 1;
atom_map3(two) -> 2;
atom_map3(three) -> 3;
atom_map3(four) -> 4;
atom_map3(five) -> 5;
atom_map3(six) -> 6.
gives slightly more efficient matching code.
Another example:
DO NOT
map_pairs1(_Map, [], Ys) ->
 Ys;
map_pairs1(_Map, Xs, []) ->
 Xs;
map_pairs1(Map, [X|Xs], [Y|Ys]) ->
 [Map(X, Y)|map_pairs1(Map, Xs, Ys)].
The first argument is not a problem. It is variable, but it is a variable in
all clauses. The problem is the variable in the second argument, Xs, in the
middle clause. Because the variable can match anything, the compiler is not
allowed to rearrange the clauses, but must generate code that matches them in
the order written.
If the function is rewritten as follows, the compiler is free to rearrange the
clauses:
DO
map_pairs2(_Map, [], Ys) ->
 Ys;
map_pairs2(_Map, [_|_]=Xs, []) ->
 Xs;
map_pairs2(Map, [X|Xs], [Y|Ys]) ->
 [Map(X, Y)|map_pairs2(Map, Xs, Ys)].
The compiler will generate code similar to this:
DO NOT (already done by the compiler)
explicit_map_pairs(Map, Xs0, Ys0) ->
 case Xs0 of
	[X|Xs] ->
	 case Ys0 of
		[Y|Ys] ->
		 [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
		[] ->
		 Xs0
	 end;
	[] ->
	 Ys0
 end.
This is slightly faster for probably the most common case that the input lists
are not empty or very short. (Another advantage is that Dialyzer can deduce a
better type for the Xs variable.)

 Function Calls

This is a rough hierarchy of the performance of the different types of function
calls:
	Calls to local or external functions (foo(), m:foo()) are the fastest
calls.
	Calling or applying a fun (Fun(), apply(Fun, [])) is just a
little slower than external calls.
	Applying an exported function (Mod:Name(),
apply(Mod, Name, [])) where the number of arguments is known at
compile time is next.
	Applying an exported function (apply(Mod, Name, Args)) where
the number of arguments is not known at compile time is the least efficient.

 Notes and Implementation Details

Calling and applying a fun does not involve any hash-table lookup. A fun
contains an (indirect) pointer to the function that implements the fun.
apply/3 must look up the code for the function to execute in a
hash table. It is therefore always slower than a direct call or a fun call.
Caching callback functions into funs may be more efficient in the long run than
apply calls for frequently-used callbacks.

Tables and Databases

 Ets, Dets, and Mnesia

Every example using Ets has a corresponding example in Mnesia. In general, all
Ets examples also apply to Dets tables.

 Select/Match Operations

Select/match operations on Ets and Mnesia tables can become very expensive
operations. They usually need to scan the complete table. Try to structure the
data to minimize the need for select/match operations. However, if you require a
select/match operation, it is still more efficient than using tab2list.
Examples of this and of how to avoid select/match are provided in the following
sections. The functions ets:select/2 and mnesia:select/3 are to be preferred
over ets:match/2, ets:match_object/2, and mnesia:match_object/3.
In some circumstances, the select/match operations do not need to scan the
complete table. For example, if part of the key is bound when searching an
ordered_set table, or if it is a Mnesia table and there is a secondary index
on the field that is selected/matched. If the key is fully bound, there is no
point in doing a select/match, unless you have a bag table and are only
interested in a subset of the elements with the specific key.
When creating a record to be used in a select/match operation, you want most of
the fields to have the value _. The easiest and fastest way to do that is as
follows:
#person{age = 42, _ = '_'}.

 Deleting an Element

The delete operation is considered successful if the element was not present
in the table. Hence all attempts to check that the element is present in the
Ets/Mnesia table before deletion are unnecessary. Here follows an example for
Ets tables:
DO
ets:delete(Tab, Key),
DO NOT
case ets:lookup(Tab, Key) of
 [] ->
 ok;
 [_|_] ->
 ets:delete(Tab, Key)
end,

 Fetching Data

Do not fetch data that you already have.
Consider that you have a module that handles the abstract data type Person.
You export the interface function print_person/1, which uses the internal
functions print_name/1, print_age/1, and print_occupation/1.
Note
If the function print_name/1, and so on, had been interface functions, the
situation would have been different, as you do not want the user of the
interface to know about the internal data representation.
DO
%%% Interface function
print_person(PersonId) ->
 %% Look up the person in the named table person,
 case ets:lookup(person, PersonId) of
 [Person] ->
 print_name(Person),
 print_age(Person),
 print_occupation(Person);
 [] ->
 io:format("No person with ID = ~p~n", [PersonID])
 end.

%%% Internal functions
print_name(Person) ->
 io:format("No person ~p~n", [Person#person.name]).

print_age(Person) ->
 io:format("No person ~p~n", [Person#person.age]).

print_occupation(Person) ->
 io:format("No person ~p~n", [Person#person.occupation]).
DO NOT
%%% Interface function
print_person(PersonId) ->
 %% Look up the person in the named table person,
 case ets:lookup(person, PersonId) of
 [Person] ->
 print_name(PersonID),
 print_age(PersonID),
 print_occupation(PersonID);
 [] ->
 io:format("No person with ID = ~p~n", [PersonID])
 end.

%%% Internal functions
print_name(PersonID) ->
 [Person] = ets:lookup(person, PersonId),
 io:format("No person ~p~n", [Person#person.name]).

print_age(PersonID) ->
 [Person] = ets:lookup(person, PersonId),
 io:format("No person ~p~n", [Person#person.age]).

print_occupation(PersonID) ->
 [Person] = ets:lookup(person, PersonId),
 io:format("No person ~p~n", [Person#person.occupation]).

 Non-Persistent Database Storage

For non-persistent database storage, prefer Ets tables over Mnesia
local_content tables. Even the Mnesia dirty_write operations carry a fixed
overhead compared to Ets writes. Mnesia must check if the table is replicated or
has indices, this involves at least one Ets lookup for each dirty_write. Thus,
Ets writes is always faster than Mnesia writes.

 tab2list

Assuming an Ets table that uses idno as key and contains the following:
[#person{idno = 1, name = "Adam", age = 31, occupation = "mailman"},
 #person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
 #person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
 #person{idno = 4, name = "Carl", age = 25, occupation = "mailman"}]
If you must return all data stored in the Ets table, you can use
ets:tab2list/1. However, usually you are only interested in a subset of the
information in which case ets:tab2list/1 is expensive. If you only want to
extract one field from each record, for example, the age of every person, then:
DO
ets:select(Tab, [{#person{idno='_',
 name='_',
 age='$1',
 occupation = '_'},
 [],
 ['$1']}]),
DO NOT
TabList = ets:tab2list(Tab),
lists:map(fun(X) -> X#person.age end, TabList),
If you are only interested in the age of all persons named "Bryan", then:
DO
ets:select(Tab, [{#person{idno='_',
 name="Bryan",
 age='$1',
 occupation = '_'},
 [],
 ['$1']}])
DO NOT
TabList = ets:tab2list(Tab),
lists:foldl(fun(X, Acc) -> case X#person.name of
 "Bryan" ->
 [X#person.age|Acc];
 _ ->
 Acc
 end
 end, [], TabList)
If you need all information stored in the Ets table about persons named "Bryan",
then:
DO
ets:select(Tab, [{#person{idno='_',
 name="Bryan",
 age='_',
 occupation = '_'}, [], ['$_']}]),
DO NOT
TabList = ets:tab2list(Tab),
lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

 ordered_set Tables

If the data in the table is to be accessed so that the order of the keys in the
table is significant, the table type ordered_set can be used instead of the
more usual set table type. An ordered_set is always traversed in Erlang term
order regarding the key field so that the return values from functions such as
select, match_object, and foldl are ordered by the key values. Traversing
an ordered_set with the first and next operations also returns the keys
ordered.
Note
An ordered_set only guarantees that objects are processed in key order.
Results from functions such as ets:select/2 appear in key order even if
the key is not included in the result.

 ETS

 Using Keys of Ets Table

An Ets table is a single-key table (either a hash table or a tree ordered by the
key) and is to be used as one. In other words, use the key to look up things
whenever possible. A lookup by a known key in a set Ets table is constant and
for an ordered_set Ets table it is O(log N). A key lookup is always preferable
to a call where the whole table has to be scanned. In the previous examples, the
field idno is the key of the table and all lookups where only the name is
known result in a complete scan of the (possibly large) table for a matching
result.
A simple solution would be to use the name field as the key instead of the
idno field, but that would cause problems if the names were not unique. A more
general solution would be to create a second table with name as key and idno
as data, that is, to index (invert) the table regarding the name field.
Clearly, the second table would have to be kept consistent with the master
table. Mnesia can do this for you, but a home-brew index table can be very
efficient compared to the overhead involved in using Mnesia.
An index table for the table in the previous examples would have to be a bag (as
keys would appear more than once) and can have the following contents:
[#index_entry{name="Adam", idno=1},
 #index_entry{name="Bryan", idno=2},
 #index_entry{name="Bryan", idno=3},
 #index_entry{name="Carl", idno=4}]
Given this index table, a lookup of the age fields for all persons named
"Bryan" can be done as follows:
MatchingIDs = ets:lookup(IndexTable,"Bryan"),
lists:map(fun(#index_entry{idno = ID}) ->
 [#person{age = Age}] = ets:lookup(PersonTable, ID),
 Age
 end,
 MatchingIDs),
Notice that this code does not use ets:match/2, but instead uses the
ets:lookup/2 call. The lists:map/2 call is only used to traverse the idnos
matching the name "Bryan" in the table; thus the number of lookups in the master
table is minimized.
Keeping an index table introduces some overhead when inserting records in the
table. The number of operations gained from the table must therefore be compared
against the number of operations inserting objects in the table. However, notice
that the gain is significant when the key can be used to lookup elements.

 Mnesia

 Secondary Index

If you frequently do lookups on a field that is not the key of the table, you
lose performance using mnesia:select() or
mnesia:match_object() as these function traverse
the whole table. Instead, you can create a secondary index and use
mnesia:index_read/3 to get faster access at the expense of using more
memory.
Example:
-record(person, {idno, name, age, occupation}).
 ...
{atomic, ok} =
mnesia:create_table(person, [{index,[#person.age]},
 {attributes,
 record_info(fields, person)}]),
{atomic, ok} = mnesia:add_table_index(person, age),
...

PersonsAge42 =
 mnesia:dirty_index_read(person, 42, #person.age),

 Transactions

Using transactions is a way to guarantee that the distributed Mnesia database
remains consistent, even when many different processes update it in parallel.
However, if you have real-time requirements it is recommended to use dirtry
operations instead of transactions. When using dirty operations, you lose the
consistency guarantee; this is usually solved by only letting one process update
the table. Other processes must send update requests to that process.
Example:
...
%% Using transaction

Fun = fun() ->
 [mnesia:read({Table, Key}),
 mnesia:read({Table2, Key2})]
 end,

{atomic, [Result1, Result2]} = mnesia:transaction(Fun),
...

%% Same thing using dirty operations
...

Result1 = mnesia:dirty_read({Table, Key}),
Result2 = mnesia:dirty_read({Table2, Key2}),

Processes

 Creating an Erlang Process

An Erlang process is lightweight compared to threads and processes in operating
systems.
A newly spawned Erlang process uses 327 words of memory. The size can be found
as follows:
Erlang/OTP 27 [erts-14.2.3] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]

Eshell V14.2.3 (press Ctrl+G to abort, type help(). for help)
1> Fun = fun() -> receive after infinity -> ok end end.
#Fun<erl_eval.43.39164016>
2> {_,Bytes} = process_info(spawn(Fun), memory).
{memory,2616}
3> Bytes div erlang:system_info(wordsize).
327
The size includes 233 words for the heap area (which includes the stack). The
garbage collector increases the heap as needed.
The main (outer) loop for a process must be tail-recursive. Otherwise, the
stack grows until the process terminates.
DO NOT
loop() ->
 receive
 {sys, Msg} ->
 handle_sys_msg(Msg),
 loop();
 {From, Msg} ->
 Reply = handle_msg(Msg),
 From ! Reply,
 loop()
 end,
 io:format("Message is processed~n", []).
The call to io:format/2 will never be executed, but a return address will
still be pushed to the stack each time loop/0 is called recursively. The
correct tail-recursive version of the function looks as follows:
DO
loop() ->
 receive
 {sys, Msg} ->
 handle_sys_msg(Msg),
 loop();
 {From, Msg} ->
 Reply = handle_msg(Msg),
 From ! Reply,
 loop()
 end.

 Initial Heap Size

The default initial heap size of 233 words is quite conservative to support
Erlang systems with hundreds of thousands or even millions of processes. The
garbage collector grows and shrinks the heap as needed.
In a system that use comparatively few processes, performance might be
improved by increasing the minimum heap size using either the +h option for
erl or on a process-per-process basis using the
min_heap_size option for spawn_opt/4.
The gain is twofold:
	Although the garbage collector grows the heap, it grows it step-by-step, which
is more costly than directly establishing a larger heap when the process is
spawned.
	The garbage collector can also shrink the heap if it is much larger than the
amount of data stored on it; setting the minimum heap size prevents that.

Warning
The runtime system probably uses more memory, and because garbage collections occur
less frequently, huge binaries can be kept much longer.
This optimization is not to be attempted without proper measurements.
In systems with many processes, computation tasks that run for a short time can
be spawned off into a new process with a higher minimum heap size. When the
process is done, it sends the result of the computation to another process and
terminates. If the minimum heap size is calculated properly, the process might
not have to do any garbage collections at all.

 Sending Messages

All data in messages sent between Erlang processes is copied, except for
refc binaries and
literals on the same Erlang node.
When a message is sent to a process on another Erlang node, it is
first encoded to the Erlang External Format
before being sent through a TCP/IP socket. The receiving Erlang node
decodes the message and distributes it to the correct process.

 Receiving messages

The cost of receiving messages depends on how complicated the receive
expression is. A simple expression that matches any message is very cheap
because it retrieves the first message in the message queue:
DO
receive
 Message -> handle_msg(Message)
end.
However, this is not always convenient: we can receive a message that we do not
know how to handle at this point, so it is common to only match the messages we
expect:
receive
 {Tag, Message} -> handle_msg(Message)
end.
While this is convenient it means that the entire message queue must be searched
until it finds a matching message. This is very expensive for processes with
long message queues, so there is an optimization for the common case of
sending a request and waiting for a response shortly after:
DO
MRef = monitor(process, Process),
Process ! {self(), MRef, Request},
receive
 {MRef, Reply} ->
 erlang:demonitor(MRef, [flush]),
 handle_reply(Reply);
 {'DOWN', MRef, _, _, Reason} ->
 handle_error(Reason)
end.
Since the compiler knows that the reference created by
monitor/2 cannot exist before the call (since it is a globally
unique identifier), and that the receive only matches messages that contain
said reference, it will tell the emulator to search only the messages that
arrived after the call to monitor/2.
The above is a simple example where one is but guaranteed that the optimization
will take, but what about more complicated code?

 Option recv_opt_info

Use the recv_opt_info option to have the compiler print information about
receive optimizations. It can be given either to the compiler or erlc:
erlc +recv_opt_info Mod.erl
or passed through an environment variable:
export ERL_COMPILER_OPTIONS=recv_opt_info
Notice that recv_opt_info is not meant to be a permanent option added to your
Makefiles, because all messages that it generates cannot be eliminated.
Therefore, passing the option through the environment is in most cases the most
practical approach.
The warnings look as follows:
efficiency_guide.erl:194: Warning: INFO: receive matches any message, this is always fast
efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference
efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position
efficiency_guide.erl:208: Warning: OPTIMIZED: all clauses match reference created by monitor/2 at efficiency_guide.erl:206
efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218
efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1
To make it clearer exactly what code the warnings refer to, the warnings in the
following examples are inserted as comments after the clause they refer to, for
example:
%% DO
simple_receive() ->
%% efficiency_guide.erl:194: Warning: INFO: not a selective receive, this is always fast
receive
 Message -> handle_msg(Message)
end.

%% DO NOT, unless Tag is known to be a suitable reference: see
%% cross_function_receive/0 further down.
selective_receive(Tag, Message) ->
%% efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference
receive
 {Tag, Message} -> handle_msg(Message)
end.

%% DO
optimized_receive(Process, Request) ->
%% efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position
 MRef = monitor(process, Process),
 Process ! {self(), MRef, Request},
 %% efficiency_guide.erl:208: Warning: OPTIMIZED: matches reference created by monitor/2 at efficiency_guide.erl:206
 receive
 {MRef, Reply} ->
 erlang:demonitor(MRef, [flush]),
 handle_reply(Reply);
 {'DOWN', MRef, _, _, Reason} ->
 handle_error(Reason)
 end.

%% DO
cross_function_receive() ->
 %% efficiency_guide.erl:218: Warning: OPTIMIZED: reference used to mark a message queue position
 Ref = make_ref(),
 %% efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218
 cross_function_receive(Ref).

cross_function_receive(Ref) ->
 %% efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1
 receive
 {Ref, Message} -> handle_msg(Message)
 end.

 Literal Pool

Constant Erlang terms (hereafter called literals) are kept in literal pools;
each loaded module has its own pool. The following function does not build the
tuple every time it is called (only to have it discarded the next time the
garbage collector was run), but the tuple is located in the module's literal
pool:
DO
days_in_month(M) ->
 element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).
If a literal, or a term that contains a literal, is inserted into an Ets table,
it is copied. The reason is that the module containing the literal can be
unloaded in the future.
When a literal is sent to another process, it is not copied. When a module
holding a literal is unloaded, the literal will be copied to the heap of all
processes that hold references to that literal.
There also exists a global literal pool that is managed by the
persistent_term module.
By default, 1 GB of virtual address space is reserved for all literal pools (in
BEAM code and persistent terms). The amount of virtual address space reserved
for literals can be changed by using the
+MIscs option when starting the emulator.
Here is an example how the reserved virtual address space for literals can be
raised to 2 GB (2048 MB):
erl +MIscs 2048

 Loss of Sharing

An Erlang term can have shared subterms. Here is a simple example:
{SubTerm, SubTerm}
Shared subterms are not preserved in the following cases:
	When a term is sent to another process
	When a term is passed as the initial process arguments in the spawn call
	When a term is stored in an Ets table

That is an optimization. Most applications do not send messages with shared
subterms.
The following example shows how a shared subterm can be created:
kilo_byte() ->
 kilo_byte(10, [42]).

kilo_byte(0, Acc) ->
 Acc;
kilo_byte(N, Acc) ->
 kilo_byte(N-1, [Acc|Acc]).
kilo_byte/1 creates a deep list. If list_to_binary/1
is called, the deep list can be converted to a binary of 1024 bytes:
1> byte_size(list_to_binary(efficiency_guide:kilo_byte())).
1024
Using the erts_debug:size/1 BIF, it can be seen that the deep list only
requires 22 words of heap space:
2> erts_debug:size(efficiency_guide:kilo_byte()).
22
Using the erts_debug:flat_size/1 BIF, the size of the deep list can be
calculated if sharing is ignored. It becomes the size of the list when it has
been sent to another process or stored in an Ets table:
3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
4094
It can be verified that sharing will be lost if the data is inserted into an Ets
table:
4> T = ets:new(tab, []).
#Ref<0.1662103692.2407923716.214181>
5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
true
6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
4094
7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
4094
When the data has passed through an Ets table, erts_debug:size/1 and
erts_debug:flat_size/1 return the same value. Sharing has been lost.
It is possible to build an experimental variant of the runtime system that
will preserve sharing when copying terms by giving the
--enable-sharing-preserving option to the configure script.

 SMP Run-Time System

The Erlang run-time system takes advantage of a multi-core or
multi-CPU computer by running several Erlang scheduler threads
(typically, the same number of threads as the number of cores).
To gain performance from a multi-core computer, your application must have more
than one runnable Erlang process most of the time. Otherwise, the Erlang
emulator can still only run one Erlang process at the time.
Benchmarks that appear to be concurrent are often sequential. For
example, the EStone
benchmark
is entirely sequential. So is the most common implementation of the
"ring benchmark"; usually one process is active, while the others wait
in a receive statement.

Drivers

This section provides a brief overview on how to write efficient drivers.
It is assumed that you have a good understanding of drivers.

 Drivers and Concurrency

The runtime system always takes a lock before running any code in a driver.
By default, that lock is at the driver level, that is, if several ports have
been opened to the same driver, only code for one port at the same time can be
running.
A driver can be configured to have one lock for each port instead.
If a driver is used in a functional way (that is, holds no state, but only does
some heavy calculation and returns a result), several ports with registered
names can be opened beforehand, and the port to be used can be chosen based on
the scheduler ID as follows:
-define(PORT_NAMES(),
	{some_driver_01, some_driver_02, some_driver_03, some_driver_04,
	 some_driver_05, some_driver_06, some_driver_07, some_driver_08,
	 some_driver_09, some_driver_10, some_driver_11, some_driver_12,
	 some_driver_13, some_driver_14, some_driver_15, some_driver_16}).

client_port() ->
 element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1,
	 ?PORT_NAMES()).
As long as there are no more than 16 schedulers, there will never be any lock
contention on the port lock for the driver.

 Avoiding Copying Binaries When Calling a Driver

There are basically two ways to avoid copying a binary that is sent to a driver:
	If the Data argument for port_control/3 is a
binary, the driver will be passed a pointer to the contents of the binary and
the binary will not be copied. If the Data argument is an iolist (list of
binaries and lists), all binaries in the iolist will be copied.
Therefore, if you want to send both a pre-existing binary and some extra data
to a driver without copying the binary, you must call
port_control/3 twice; once with the binary and once with
the extra data. However, that will only work if there is only one process
communicating with the port (because otherwise another process can call the
driver in-between the calls).

	Implement an outputv callback (instead of an output callback) in the
driver. If a driver has an outputv callback, refc binaries passed in an
iolist in the Data argument for port_command/2
will be passed as references to the driver.

 Returning Small Binaries from a Driver

The runtime system can represent binaries up to 64 bytes as heap binaries. They
are always copied when sent in messages, but they require less memory if they
are not sent to another process and garbage collection is cheaper.
If you know that the binaries you return are always small, you are advised to
use driver API calls that do not require a pre-allocated binary, for example,
driver_output() or
erl_drv_output_term(), using the
ERL_DRV_BUF2BINARY format, to allow the runtime to construct a heap binary.

 Returning Large Binaries without Copying from a Driver

To avoid copying data when a large binary is sent or returned from the driver to
an Erlang process, the driver must first allocate the binary and then send it to
an Erlang process in some way.
Use driver_alloc_binary() to
allocate a binary.
There are several ways to send a binary created with driver_alloc_binary():
	From the control callback, a binary can be returned if
set_port_control_flags() has
been called with the flag value PORT_CONTROL_FLAG_BINARY.
	A single binary can be sent with
driver_output_binary().
	Using erl_drv_output_term() or
erl_drv_send_term(), a binary can
be included in an Erlang term.

Memory Usage

A good start when programming efficiently is to know how much memory different
data types and operations require. It is implementation-dependent how much
memory the Erlang data types and other items consume, but the following table
shows some figures for the erts-8.0 system in OTP 19.0.
The unit of measurement is memory words. There exists both a 32-bit and a 64-bit
implementation. A word is therefore 4 bytes or 8 bytes, respectively. The value
for a running system can be determined by calling
erlang:system_info(wordsize).
 	Data Type
 	Memory Size
 	Small integer
 	1 word.
 On 32-bit architectures: -134217729 < i < 134217728
 (28 bits).
 On 64-bit architectures: -576460752303423489 < i <
 576460752303423488 (60 bits).

 System Limits - Erlang System Documentation v27.3.4.3

System Limits

The Erlang language specification puts no limits on the number of processes,
length of atoms, and so on. However, for performance and memory saving reasons,
there will always be limits in a practical implementation of the Erlang language
and execution environment.
	Processes - The maximum number of simultaneously alive Erlang processes
is by default 1,048,576. This limit can be configured at startup. For more information,
see the +P command-line flag
in the erl(1) manual page in ERTS.

	 Unique Local Process Identifiers on a
Runtime System Instance - On a 64 bit system at most 2⁶⁰ - 1
unique process identifiers can be created, and on a 32 bit system at most 2²⁸ - 1.

	Known nodes - A remote node Y must be known to node X if there exists
any pids, ports, references, or funs (Erlang data types) from Y on X, or if
X and Y are connected. The maximum number of remote nodes simultaneously/ever known
to a node is limited by the maximum number of atoms available
for node names. All data concerning remote nodes, except for the node name atom,
are garbage-collected.

	Connected nodes - The maximum number of simultaneously connected nodes is
limited by either the maximum number of simultaneously known remote nodes,
the maximum number of (Erlang) ports available,
or the maximum number of sockets available.

	Characters in an atom - 255.

	 Atoms - By default, the maximum number of atoms is 1,048,576.
This limit can be raised or lowered using the +t option.

	Elements in a tuple - The maximum number of elements in a
tuple is 16,777,215 (24-bit unsigned integer).

	Size of binary - In the 32-bit run-time system for Erlang, 536,870,911 bytes
is the largest binary that can be constructed or matched using the bit syntax.
In the 64-bit run-time system, the maximum size is 2,305,843,009,213,693,951 bytes.
If the limit is exceeded, bit syntax construction fails with a system_limit
exception, while any attempt to match a binary that is too large
fails. From Erlang/OTP 27, all other operations that create binaries (such as
list_to_binary/1) also enforces the same limit.

	Total amount of data allocated by an Erlang node - The Erlang runtime system
can use the complete 32-bit (or 64-bit) address space, but the operating system
often limits a single process to use less than that.

	Length of a node name - An Erlang node name has the form host@shortname
or host@longname. The node name is used as an atom within the system, so the
maximum size of 255 holds also for the node name.

	 Open ports - The maximum number of simultaneously open
Erlang ports is often by default 16,384. This limit can be configured at startup.
For more information, see the +Q command-line
flag in the erl(1) manual page in ERTS.

	 Unique Local Port Identifiers on a Runtime System Instance -
On a 64 bit system at most 2⁶⁰ - 1 unique port identifiers can be created and
on a 32 bit system at most 2²⁸ - 1.

	 Open files and sockets - The maximum number of simultaneously
open files and sockets depends on the maximum number of Erlang ports
available, as well as on operating system-specific settings and limits.

	Number of arguments to a function or fun - 255.

	 Unique References on a Runtime System Instance -
Each scheduler thread has its own set of references, and all other threads have
a shared set of references. Each set of references consist of 2⁶⁴ - 1unique
references. That is, the total amount of unique references that can be produced
on a runtime system instance is (NumSchedulers + 1) × (2⁶⁴ - 1). If a scheduler
thread create a new reference each nano second, references will at earliest be
reused after more than 584 years. That is, for the foreseeable future they are
sufficiently unique.

	 Unique Integers on a Runtime System Instance -
There are two types of unique integers created by the
erlang:unique_integer/1 BIF:
	Unique integers created with the monotonic modifier consist of
a set of 2⁶⁴ - 1 unique integers.
	Unique integers created without the monotonic modifier consist
of a set of 2⁶⁴ - 1 unique integers per scheduler thread and a
set of 2⁶⁴ - 1 unique integers shared by other threads. That is,
the total amount of unique integers without the monotonic
modifier is (NumSchedulers + 1) × (2⁶⁴ - 1).

If a unique integer is created each nano second, unique integers will be
reused at earliest after more than 584 years. That is, for the foreseeable future
they are sufficiently unique.

	 Timer resolution - On most systems, millisecond resolution. For more
information, see the Timers section of
the Time and Time Correction in Erlang ERTS
User's guide.

 Profiling - Erlang System Documentation v27.3.4.3

Profiling

 Never Guess About Performance Bottlenecks

Even experienced software developers often guess wrong about where the
performance bottlenecks are in their programs. Therefore, profile your program
to see where the performance bottlenecks are and concentrate on optimizing them.
Erlang/OTP contains several tools to help finding bottlenecks:
	tprof is a tracing profiler that can measure call count, call time, or
heap allocations per function call.
	fprof provides the most detailed information about where the program time
is spent, but it significantly slows down the program it profiles.
	dbg is the generic erlang tracing frontend. By using the timestamp or
cpu_timestamp options it can be used to time how long function calls in a
live system take.
	lcnt is used to find contention points in the Erlang Run-Time System's
internal locking mechanisms. It is useful when looking for bottlenecks in
interaction between process, port, ETS tables, and other entities that can be
run in parallel.

The tools are further described in Tools.
There are also several open source tools outside of Erlang/OTP that can be used
to help profiling. Some of them are:
	erlgrind can be used to visualize
fprof data in kcachegrind.

	eflame is an alternative to fprof that
displays the profiling output as a flamegraph.

	recon is a collection of Erlang
profiling and debugging tools. This tool comes with an accompanying E-book
called Erlang in Anger.

	perf is a sampling
profiler for Linux that provides functionality similar to fprof but with
much lower overhead. Profiling Erlang code is possible when the emulator has
been started with the +JPperf true emulator flag, and is only available when
the JIT is enabled.
For more details about how to run perf see the
perf support section in the BeamAsm
internal documentation.

 Memory profiling

eheap_alloc: Cannot allocate 1234567890 bytes of memory (of type "heap").
The above slogan is one of the more common reasons for Erlang to terminate. For
unknown reasons the Erlang Run-Time System failed to allocate memory to use.
When this happens a crash dump is generated that contains information about the
state of the system as it ran out of memory. Use
crashdump_viewer to get a view of the memory being
used. Look for processes with large heaps or many messages, large ETS tables,
and so on.
When looking at memory usage in a running system the most basic function to get
information from is erlang:memory(). It returns the
current memory usage of the system. instrument can be used to get a more
detailed breakdown of where memory is used.
Processes, ports, and ETS tables can then be inspected using their respective
information functions, that is,
process_info/2,
erlang:port_info/2, and ets:info/1.
Sometimes the system can enter a state where the reported memory from
erlang:memory(total) is very different from the memory reported by
the operating system. One reason for that is internal fragmentation
within the Erlang run-time system. Data about how memory is allocated
can be retrieved using
erlang:system_info(allocator). The
data you get from that function is raw and hard to read.
recon_alloc can
be used to extract useful information from system_info statistics
counters.

 Large Systems

For a large system, it can be interesting to run profiling on a simulated and
limited scenario to start with. But bottlenecks have a tendency to appear or
cause problems only when many things are going on at the same time, and when
many nodes are involved. Therefore, it is also desirable to run profiling in a
system test plant on a real target system.
For a large system, you do not want to run the profiling tools on the whole
system. Instead you want to concentrate on central processes and modules, which
account for a big part of the execution.
There are also some tools that can be used to get a view of the whole system
with more or less overhead.
	observer is a GUI tool that can connect to remote nodes and display a
variety of information about the running system.
	etop is a command line tool that can connect to remote nodes and display
information similar to what the UNIX tool top shows.
	msacc allows the user to get a view of what the Erlang Run-Time system is
spending its time doing. Has a very low overhead, which makes it useful to run
in heavily loaded systems to get some idea of where to start doing more
granular profiling.

 What to Look For

When analyzing the result file from the profiling activity, look for functions
that are called many times and have a long "own" execution time (time excluding
calls to other functions). Functions that are called a lot of times can also be
interesting, as even small things can add up to quite a bit if repeated often.
Also ask yourself what you can do to reduce this time. The following are
appropriate types of questions to ask yourself:
	Is it possible to reduce the number of times the function is called?
	Can any test be run less often if the order of tests is changed?
	Can any redundant tests be removed?
	Does any calculated expression give the same result each time?
	Are there other ways to do this that are equivalent and more efficient?
	Can another internal data representation be used to make things more
efficient?

These questions are not always trivial to answer. Some benchmarks might be
needed to back up your theory and to avoid making things slower if your theory
is wrong. For details, see Benchmarking.

 Tools

 fprof

fprof measures the execution time for each function, both own time, that is,
how much time a function has used for its own execution, and accumulated time,
that is, including called functions. The values are displayed per process. You
also get to know how many times each function has been called.
fprof is based on trace to file to minimize runtime performance impact. Using
fprof is just a matter of calling a few library functions, see the fprof
manual page in Tools.

 eprof

eprof is based on the Erlang trace_info BIFs. eprof shows how much time
has been used by each process, and in which function calls this time has been
spent. Time is shown as a percentage of total time and absolute time. For more
information, see the eprof manual page in Tools.

 cprof

cprof is something in between fprof and cover regarding features. It
counts how many times each function is called when the program is run, on a per
module basis. cprof has a low performance degradation effect (compared with
fprof) and does not need to recompile any modules to profile (compared with
cover). For more information, see the cprof manual page in Tools.

 Tool Summary

	Tool	Results	Size of Result	Effects on Program Execution Time	Records Number of Calls	Records Execution Time	Records Called by	Records Garbage Collection
	fprof	Per process to screen/file	Large	Significant slowdown	Yes	Total and own	Yes	Yes
	eprof	Per process/function to screen/file	Medium	Small slowdown	Yes	Only total	No	No
	cprof	Per module to caller	Small	Small slowdown	Yes	No	No	No

Table: Tool Summary

 dbg

dbg is a generic Erlang trace tool. By using the timestamp or
cpu_timestamp options it can be used as a precision instrument to profile how
long time a function call takes for a specific process. This can be very useful
when trying to understand where time is spent in a heavily loaded system as it
is possible to limit the scope of what is profiled to be very small. For more
information, see the dbg manual page in Runtime Tools.

 lcnt

lcnt is used to profile interactions in between entities that run in parallel.
For example if you have a process that all other processes in the system needs
to interact with (maybe it has some global configuration), then lcnt can be
used to figure out if the interaction with that process is a problem.
In the Erlang Run-time System entities are only run in parallel when there are
multiple schedulers. Therefore lcnt will show more contention points (and thus
be more useful) on systems using many schedulers on many cores.
For more information, see the lcnt manual page in Tools.

 Benchmarking - Erlang System Documentation v27.3.4.3

Benchmarking

The main purpose of benchmarking is to find out which implementation of a given
algorithm or function is the fastest. Benchmarking is far from an exact science.
Today's operating systems generally run background tasks that are difficult to
turn off. Caches and multiple CPU cores do not facilitate benchmarking. It would
be best to run UNIX computers in single-user mode when benchmarking, but that is
inconvenient to say the least for casual testing.

 Using erlperf

A useful tool for benchmarking is erlperf
(documentation).
It makes it simple to find out which code is faster. For example, here is how
two methods of generating random bytes can be compared:
% erlperf 'rand:bytes(2).' 'crypto:strong_rand_bytes(2).'
Code || QPS Time Rel
rand:bytes(2). 1 7784 Ki 128 ns 100%
crypto:strong_rand_bytes(2). 1 2286 Ki 437 ns 29%
From the Time column we can read out that on average a call to
rand:bytes(2) executes in 128 nano seconds, while
a call to
crypto:strong_rand_bytes(2) executes
in 437 nano seconds.
From the QPS column we can read out how many calls that can be
made in a second. For rand:bytes(2), it is 7,784,000 calls per second.
The Rel column shows the relative differences, with 100% indicating
the fastest code.
When generating two random bytes at the time, rand:bytes/1 is more
than three times faster than crypto:strong_rand_bytes/1. Assuming
that we really need strong random numbers and we need to get them as
fast as possible, what can we do? One way could be to generate more
than two bytes at the time.
% erlperf 'rand:bytes(100).' 'crypto:strong_rand_bytes(100).'
Code || QPS Time Rel
rand:bytes(100). 1 2124 Ki 470 ns 100%
crypto:strong_rand_bytes(100). 1 1915 Ki 522 ns 90%
rand:bytes/1 is still faster when we generate 100 bytes at the time,
but the relative difference is smaller.
% erlperf 'rand:bytes(1000).' 'crypto:strong_rand_bytes(1000).'
Code || QPS Time Rel
crypto:strong_rand_bytes(1000). 1 1518 Ki 658 ns 100%
rand:bytes(1000). 1 284 Ki 3521 ns 19%
When we generate 1000 bytes at the time, crypto:strong_rand_bytes/1 is
now the fastest.

 Benchmarking using Erlang/OTP functionality

Benchmarks can measure wall-clock time or CPU time.
	timer:tc/3 measures wall-clock time. The advantage with wall-clock time is
that I/O, swapping, and other activities in the operating system kernel are
included in the measurements. The disadvantage is that the measurements often
vary a lot. Usually it is best to run the benchmark several times and note
the shortest time, which is the minimum time that is possible to achieve
under the best of circumstances.

	statistics(runtime) measures CPU time spent
in the Erlang virtual machine. The advantage with CPU time is that
the results are more consistent from run to run. The disadvantage is
that the time spent in the operating system kernel (such as swapping
and I/O) is not included. Therefore, measuring CPU time is
misleading if any I/O (file or socket) is involved.

It is probably a good idea to do both wall-clock measurements and CPU time
measurements.
Some final advice:
	The granularity of both measurement types can be high. Therefore, ensure that
each individual measurement lasts for at least several seconds.
	To make the test fair, each new test run is to run in its own, newly created
Erlang process. Otherwise, if all tests run in the same process, the later
tests start out with larger heap sizes and therefore probably do fewer garbage
collections. Also consider restarting the Erlang emulator between each test.
	Do not assume that the fastest implementation of a given algorithm on computer
architecture X is also the fastest on computer architecture Y.

 Introduction - Erlang System Documentation v27.3.4.3

Introduction

This section informs on interoperability, that is, information exchange, between
Erlang and other programming languages. The included examples mainly treat
interoperability between Erlang and C.

 Purpose

The purpose of this tutorial is to describe different interoperability
mechanisms that can be used when integrating a program written in Erlang with a
program written in another programming language, from the Erlang programmer's
perspective.

 Prerequisites

It is assumed that you are a skilled Erlang programmer, familiar with concepts
such as Erlang data types, processes, messages, and error handling.
To illustrate the interoperability principles, C programs running in a UNIX
environment have been used. It is assumed that you have enough knowledge to
apply these principles to the relevant programming languages and platforms.
Note
For readability, the example code is kept as simple as possible. For example,
it does not include error handling, which might be vital in a real-life
system.

 Overview - Erlang System Documentation v27.3.4.3

Overview

 Built-In Mechanisms

Two interoperability mechanisms are built into the Erlang runtime system,
distributed Erlang, ports, and nifs. A variation of ports is linked-in drivers.

 Distributed Erlang

An Erlang runtime system is made a distributed Erlang node by giving it a name.
A distributed Erlang node can connect to, and monitor, other nodes. It can also
spawn processes at other nodes. Message passing and error handling between
processes at different nodes are transparent. A number of useful STDLIB modules
are available in a distributed Erlang system. For example, global, which
provides global name registration. The distribution mechanism is implemented
using TCP/IP sockets.
When to use: Distributed Erlang is primarily used for Erlang-Erlang
communication. It can also be used for communication between Erlang and C, if
the C program is implemented as a C node, see
C and Java Libraries.
Where to read more: Distributed Erlang and some distributed programming
techniques are described in the Erlang book.
For more information, see
Distributed Programming.
Relevant manual pages are the following:
	erlang manual page in ERTS (describes the BIFs)
	global manual page in Kernel
	net_adm manual page in Kernel
	pg manual page in Kernel
	rpc manual page in Kernel
	pool manual page in STDLIB
	slave manual page in STDLIB

 Ports and Linked-In Drivers

Ports provide the basic mechanism for communication with the external world,
from Erlang's point of view. The ports provide a byte-oriented interface to an
external program. When a port is created, Erlang can communicate with it by
sending and receiving lists of bytes or binaries (not Erlang terms).
This means that the programmer might have to invent a suitable encoding and decoding scheme.
The implementation of the port mechanism depends on the platform. For UNIX,
pipes are used and the external program is assumed to read from standard input
and write to standard output. The external program can be written in any
programming language as long as it can handle the interprocess communication
mechanism with which the port is implemented.
The external program resides in another OS process than the Erlang runtime
system. In some cases this is not acceptable. Consider, for example, drivers
with very hard time requirements. It is therefore possible to write a program in
C according to certain principles, and dynamically link it to the Erlang runtime
system. This is called a linked-in driver.
When to use: Ports can be used for all kinds of interoperability situations
where the Erlang program and the other program runs on the same machine.
Programming is fairly straight-forward.
Linked-in drivers involves writing certain call-back functions in C. This
requires very good skills as the code is linked to the Erlang runtime system.
It is recommended to use NIFs
instead of linked-in drivers as they provide a richer feature set and can use
dirty schedulers for lengthy work.
Warning
A faulty linked-in driver causes the entire Erlang runtime system to leak
memory, hang, or crash.
Where to read more: Ports are described in section "Miscellaneous Items" of
the Erlang book. Linked-in drivers are described in Appendix E.
The BIF open_port/2 is documented in the erlang manual
page in ERTS.
For linked-in drivers, the programmer needs to read the erl_ddll manual page
in Kernel.
Examples: Port example in Ports.

 Native implemented functions (Nifs)

NIFs provide an alternative to a port using linked-in drivers to link C code into
the Erlang runtime system. NIFs make it possible to provide C implementation of
normal Erlang functions when interacting with the OS or some other external library.
Warning
A faulty NIFs causes the entire Erlang runtime system to leak
memory, hang, crash, or leak sensitive information.
When to use: Since a faulty NIF can cause many different problems related to both
stability and security it is recommended to use an external Port if possible. If the
overhead is not acceptable then a NIF is a good solution for interacting with any
native code, be it in C, C++ or Rust.
Where to read more: NIFs are described in API functions for an Erlang NIF library.
Examples: Port example in NIFs.

 C and Java Libraries

 Erl_Interface

The program at the other side of a port is often a C program. To help the C
programmer, the Erl_Interface library has been developed
The Erlang external term format is a representation of an Erlang term as a
sequence of bytes, that is, a binary. Conversion between the two representations
is done using the following BIFs:
Binary = term_to_binary(Term)
Term = binary_to_term(Binary)
A port can be set to use binaries instead of lists of bytes. It is then not
necessary to invent any encoding/decoding scheme. Erl_Interface functions are
used for unpacking the binary and convert it into a struct similar to an Erlang
term. Such a struct can be manipulated in different ways, be converted to the
Erlang external format, and sent to Erlang.
When to use: In C code, in conjunction with Erlang binaries.
Where to read more: See the Erlang Interface User's Guide, Command Reference,
and Library Reference. In Erlang/OTP R5B, and earlier versions, the information
is part of the Kernel application.
Examples: Erl_Interface example in Erl_Interface.

 C Nodes

A C program that uses the ErlInterface functions for setting up a connection
to, and communicating with, a distributed Erlang node is called a _C node, or a
hidden node. The main advantage with a C node is that the communication from
the Erlang programmer's perspective is extremely easy, as the C program behaves
as a distributed Erlang node.
When to use: C nodes can typically be used on device processors (as opposed to
control processors) where C is a better choice than Erlang due to memory
limitations or application characteristics, or both.
Where to read more: See the ei_connect part of the
Erl_Interface documentation. The programmer also needs to be
familiar with TCP/IP sockets, see Sockets in
Standard Protocols and Distributed Erlang in
Built-In Mechanisms.
Example: C node example in C Nodes.

 Jinterface

In Erlang/OTP R6B, a library similar to ErlInterface for Java was added called
_jinterface. It provides a tool for Java programs to communicate with Erlang
nodes.

 Standard Protocols

Sometimes communication between an Erlang program and another program using a
standard protocol is desirable. Erlang/OTP currently supports TCP/IP and UDP
sockets: as follows:
	SNMP
	HTTP
	IIOP (CORBA)

Using one of the latter three requires good knowledge about the protocol and is
not covered by this tutorial. See the SNMP, Inets, and Orber applications,
respectively.

 Sockets

Simply put, connection-oriented socket communication (TCP/IP) consists of an
initiator socket ("server") started at a certain host with a certain port
number. A connector socket ("client"), which is aware of the initiator host name
and port number, can connect to it and data can be sent between them.
Connection-less socket communication (UDP) consists of an initiator socket at a
certain host with a certain port number and a connector socket sending data to
it.
For a detailed description of the socket concept, refer to a suitable book about
network programming. A suggestion is UNIX Network Programming, Volume 1:
Networking APIs - Sockets and XTI by W. Richard Stevens, ISBN: 013490012X.
In Erlang/OTP, access to TCP/IP and UDP sockets is provided by the modules
gen_tcp and gen_udp in Kernel. Both are easy to use and do not require
detailed knowledge about the socket concept.
When to use: For programs running on the same or on another machine than the
Erlang program.
Where to read more: See the gen_tcp and the gen_udp manual pages in
Kernel.

 IC and CORBA

IC (Erlang IDL Compiler) is an interface generator that, given an IDL interface
specification, automatically generates stub code in Erlang, C, or Java. See the
IC User's Guide and IC Reference Manual.
For details, see the corba repository.

 Problem Example - Erlang System Documentation v27.3.4.3

Problem Example

 Description

A common interoperability situation is when you want to incorporate a piece of
code, solving a complex problem, in your Erlang program. Suppose for example,
that you have the following C functions that you would like to call from Erlang:
/* complex.c */

int foo(int x) {
 return x+1;
}

int bar(int y) {
 return y*2;
}
The functions are deliberately kept as simple as possible, for readability
reasons.
From an Erlang perspective, it is preferable to be able to call foo and bar
without having to bother about that they are C functions:
% Erlang code
...
Res = complex:foo(X),
...
Here, the communication with C is hidden in the implementation of complex.erl.
In the following sections, it is shown how this module can be implemented using
the different interoperability mechanisms.

 Ports - Erlang System Documentation v27.3.4.3

Ports

This section outlines an example of how to solve the example problem in the
previous section by using a port.
The scenario is illustrated in the following figure:

title: Port Communication

flowchart LR
 subgraph Legend
 direction LR

 os[OS Process]
 erl([Erlang Process])
 end

 subgraph ERTS
 direction LR

 port{Port} --> erlProc
 erlProc([Connected process]) --> port
 end

 port --> proc[External Program]
 proc --> port

 Erlang Program

All communication between Erlang and C must be established by creating the port.
The Erlang process that creates a port is said to be the connected process of
the port. All communication to and from the port must go through the connected
process. If the connected process terminates, the port also terminates (and the
external program, if it is written properly).
The port is created using the BIF open_port/2 with
{spawn,ExtPrg} as the first argument. The string ExtPrg is the name of the
external program, including any command line arguments. The second argument is a
list of options, in this case only {packet,2}. This option says that a 2 byte
length indicator is to be used to simplify the communication between C and
Erlang. The Erlang port automatically adds the length indicator, but this must
be done explicitly in the external C program.
The process is also set to trap exits, which enables detection of failure of the
external program:
-module(complex1).
-export([start/1, init/1]).

start(ExtPrg) ->
 spawn(?MODULE, init, [ExtPrg]).

init(ExtPrg) ->
 register(complex, self()),
 process_flag(trap_exit, true),
 Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
 loop(Port).
Now complex1:foo/1 and complex1:bar/1 can be implemented. Both send a
message to the complex process and receive the following replies:
foo(X) ->
 call_port({foo, X}).
bar(Y) ->
 call_port({bar, Y}).

call_port(Msg) ->
 complex ! {call, self(), Msg},
 receive
 {complex, Result} ->
 Result
 end.
The complex process does the following:
	Encodes the message into a sequence of bytes.
	Sends it to the port.
	Waits for a reply.
	Decodes the reply.
	Sends it back to the caller:

loop(Port) ->
 receive
 {call, Caller, Msg} ->
 Port ! {self(), {command, encode(Msg)}},
 receive
 {Port, {data, Data}} ->
 Caller ! {complex, decode(Data)}
 end,
 loop(Port)
 end.
Assuming that both the arguments and the results from the C functions are less
than 256, a simple encoding/decoding scheme is employed. In this scheme, foo
is represented by byte 1, bar is represented by 2, and the argument/result is
represented by a single byte as well:
encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.
The resulting Erlang program, including functionality for stopping the port and
detecting port failures, is as follows:
-module(complex1).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->
 spawn(?MODULE, init, [ExtPrg]).
stop() ->
 complex ! stop.

foo(X) ->
 call_port({foo, X}).
bar(Y) ->
 call_port({bar, Y}).

call_port(Msg) ->
 complex ! {call, self(), Msg},
 receive
	{complex, Result} ->
	 Result
 end.

init(ExtPrg) ->
 register(complex, self()),
 process_flag(trap_exit, true),
 Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
 loop(Port).

loop(Port) ->
 receive
	{call, Caller, Msg} ->
	 Port ! {self(), {command, encode(Msg)}},
	 receive
		{Port, {data, Data}} ->
		 Caller ! {complex, decode(Data)}
	 end,
	 loop(Port);
	stop ->
	 Port ! {self(), close},
	 receive
		{Port, closed} ->
		 exit(normal)
	 end;
	{'EXIT', Port, Reason} ->
	 exit(port_terminated)
 end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

 C Program

On the C side, it is necessary to write functions for receiving and sending data
with 2 byte length indicators from/to Erlang. By default, the C program is to
read from standard input (file descriptor 0) and write to standard output (file
descriptor 1). Examples of such functions, read_cmd/1 and write_cmd/2,
follows:
/* erl_comm.c */

#include <stdio.h>
#include <unistd.h>

typedef unsigned char byte;

int read_exact(byte *buf, int len)
{
 int i, got=0;

 do {
 if ((i = read(0, buf+got, len-got)) <= 0){
 return(i);
 }
 got += i;
 } while (got<len);

 return(len);
}

int write_exact(byte *buf, int len)
{
 int i, wrote = 0;

 do {
 if ((i = write(1, buf+wrote, len-wrote)) <= 0)
 return (i);
 wrote += i;
 } while (wrote<len);

 return (len);
}

int read_cmd(byte *buf)
{
 int len;

 if (read_exact(buf, 2) != 2)
 return(-1);
 len = (buf[0] << 8) | buf[1];
 return read_exact(buf, len);
}

int write_cmd(byte *buf, int len)
{
 byte li;

 li = (len >> 8) & 0xff;
 write_exact(&li, 1);

 li = len & 0xff;
 write_exact(&li, 1);

 return write_exact(buf, len);
}
Notice that stdin and stdout are for buffered input/output and must not be
used for the communication with Erlang.
In the main function, the C program is to listen for a message from Erlang
and, according to the selected encoding/decoding scheme, use the first byte to
determine which function to call and the second byte as argument to the
function. The result of calling the function is then to be sent back to Erlang:
/* port.c */

typedef unsigned char byte;

int main() {
 int fn, arg, res;
 byte buf[100];

 while (read_cmd(buf) > 0) {
 fn = buf[0];
 arg = buf[1];

 if (fn == 1) {
 res = foo(arg);
 } else if (fn == 2) {
 res = bar(arg);
 }

 buf[0] = res;
 write_cmd(buf, 1);
 }
}
Notice that the C program is in a while-loop, checking for the return value
of read_cmd/1. This is because the C program must detect when the port closes
and terminates.

 Running the Example

Step 1. Compile the C code:
$ gcc -o extprg complex.c erl_comm.c port.c
Step 2. Start Erlang and compile the Erlang code:
$ erl
Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
1> c(complex1).
{ok,complex1}
Step 3. Run the example:
2> complex1:start("./extprg").
<0.34.0>
3> complex1:foo(3).
4
4> complex1:bar(5).
10
5> complex1:stop().
stop

 Erl_Interface - Erlang System Documentation v27.3.4.3

Erl_Interface

This section outlines an example of how to solve the example problem in
Problem Example by using a port and Erl_Interface. It is necessary
to read the port example in Ports before reading this section.

 Erlang Program

The following example shows an Erlang program communicating with a C program
over a plain port with home made encoding:
-module(complex1).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->
 spawn(?MODULE, init, [ExtPrg]).
stop() ->
 complex ! stop.

foo(X) ->
 call_port({foo, X}).
bar(Y) ->
 call_port({bar, Y}).

call_port(Msg) ->
 complex ! {call, self(), Msg},
 receive
	{complex, Result} ->
	 Result
 end.

init(ExtPrg) ->
 register(complex, self()),
 process_flag(trap_exit, true),
 Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
 loop(Port).

loop(Port) ->
 receive
	{call, Caller, Msg} ->
	 Port ! {self(), {command, encode(Msg)}},
	 receive
		{Port, {data, Data}} ->
		 Caller ! {complex, decode(Data)}
	 end,
	 loop(Port);
	stop ->
	 Port ! {self(), close},
	 receive
		{Port, closed} ->
		 exit(normal)
	 end;
	{'EXIT', Port, Reason} ->
	 exit(port_terminated)
 end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.
There are two differences when using Erl_Interface on the C side compared to the
example in Ports, using only the plain port:
	As Erl_Interface operates on the Erlang external term format, the port must be
set to use binaries.
	Instead of inventing an encoding/decoding scheme, the
term_to_binary/1 and
binary_to_term/1 BIFs are to be used.

That is:
open_port({spawn, ExtPrg}, [{packet, 2}])
is replaced with:
open_port({spawn, ExtPrg}, [{packet, 2}, binary])
And:
Port ! {self(), {command, encode(Msg)}},
receive
 {Port, {data, Data}} ->
 Caller ! {complex, decode(Data)}
end
is replaced with:
Port ! {self(), {command, term_to_binary(Msg)}},
receive
 {Port, {data, Data}} ->
 Caller ! {complex, binary_to_term(Data)}
end
The resulting Erlang program is as follows:
-module(complex2).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->
 spawn(?MODULE, init, [ExtPrg]).
stop() ->
 complex ! stop.

foo(X) ->
 call_port({foo, X}).
bar(Y) ->
 call_port({bar, Y}).

call_port(Msg) ->
 complex ! {call, self(), Msg},
 receive
	{complex, Result} ->
	 Result
 end.

init(ExtPrg) ->
 register(complex, self()),
 process_flag(trap_exit, true),
 Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
 loop(Port).

loop(Port) ->
 receive
	{call, Caller, Msg} ->
	 Port ! {self(), {command, term_to_binary(Msg)}},
	 receive
		{Port, {data, Data}} ->
		 Caller ! {complex, binary_to_term(Data)}
	 end,
	 loop(Port);
	stop ->
	 Port ! {self(), close},
	 receive
		{Port, closed} ->
		 exit(normal)
	 end;
	{'EXIT', Port, Reason} ->
	 exit(port_terminated)
 end.
Notice that calling complex2:foo/1 and complex2:bar/1 results in the tuple
{foo,X} or {bar,Y} being sent to the complex process, which codes them as
binaries and sends them to the port. This means that the C program must be able
to handle these two tuples.

 C Program

The following example shows a C program communicating with an Erlang program
over a plain port with the Erlang external term format encoding:
/* ei.c */

#include "ei.h"
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

typedef unsigned char byte;

int read_cmd(byte *buf);
int write_cmd(byte *buf, int len);
int foo(int x);
int bar(int y);

static void fail(int place) {
 fprintf(stderr, "Something went wrong %d\n", place);
 exit(1);
}

int main() {
 byte buf[100];
 int index = 0;
 int version = 0;
 int arity = 0;
 char atom[128];
 long in = 0;
 int res = 0;
 ei_x_buff res_buf;
 ei_init();
 while (read_cmd(buf) > 0) {
 if (ei_decode_version(buf, &index, &version) != 0)
 fail(1);
 if (ei_decode_tuple_header(buf, &index, &arity) != 0)
 fail(2);
 if (arity != 2)
 fail(3);
 if (ei_decode_atom(buf, &index, atom) != 0)
 fail(4);
 if (ei_decode_long(buf, &index, &in) != 0)
 fail(5);
 if (strncmp(atom, "foo", 3) == 0) {
 res = foo((int)in);
 } else if (strncmp(atom, "bar", 3) == 0) {
 res = bar((int)in);
 }
 if (ei_x_new_with_version(&res_buf) != 0)
 fail(6);
 if (ei_x_encode_long(&res_buf, res) != 0)
 fail(7);
 write_cmd(res_buf.buff, res_buf.index);

 if (ei_x_free(&res_buf) != 0)
 fail(8);
 index = 0;
 }
}
The following functions, read_cmd() and write_cmd(), from the erl_comm.c
example in Ports can still be used for reading from and writing to
the port:
/* erl_comm.c */

#include <stdio.h>
#include <unistd.h>

typedef unsigned char byte;

int read_exact(byte *buf, int len)
{
 int i, got=0;

 do {
 if ((i = read(0, buf+got, len-got)) <= 0){
 return(i);
 }
 got += i;
 } while (got<len);

 return(len);
}

int write_exact(byte *buf, int len)
{
 int i, wrote = 0;

 do {
 if ((i = write(1, buf+wrote, len-wrote)) <= 0)
 return (i);
 wrote += i;
 } while (wrote<len);

 return (len);
}

int read_cmd(byte *buf)
{
 int len;

 if (read_exact(buf, 2) != 2)
 return(-1);
 len = (buf[0] << 8) | buf[1];
 return read_exact(buf, len);
}

int write_cmd(byte *buf, int len)
{
 byte li;

 li = (len >> 8) & 0xff;
 write_exact(&li, 1);

 li = len & 0xff;
 write_exact(&li, 1);

 return write_exact(buf, len);
}

 Running the Example

Step 1. Compile the C code. This provides the paths to the include file
ei.h, and also to the library ei:
$ gcc -o extprg -I/usr/local/otp/lib/erl_interface-3.9.2/include \
 -L/usr/local/otp/lib/erl_interface-3.9.2/lib \
 complex.c erl_comm.c ei.c -lei -lpthread
In Erlang/OTP R5B and later versions of OTP, the include and lib directories
are situated under $OTPROOT/lib/erl_interface-VSN, where $OTPROOT is the
root directory of the OTP installation (/usr/local/otp in the recent example)
and VSN is the version of the Erl_interface application (3.2.1 in the recent
example).
In R4B and earlier versions of OTP, include and lib are situated under
$OTPROOT/usr.
Step 2. Start Erlang and compile the Erlang code:
$ erl
Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
1> c(complex2).
{ok,complex2}
Step 3. Run the example:
2> complex2:start("./extprg").
<0.34.0>
3> complex2:foo(3).
4
4> complex2:bar(5).
10
5> complex2:bar(352).
704
6> complex2:stop().
stop

 Port Drivers - Erlang System Documentation v27.3.4.3

Port Drivers

This section outlines an example of how to solve the example problem in
Problem Example by using a linked-in port driver.
A port driver is a linked-in driver that is accessible as a port from an Erlang
program. It is a shared library (SO in UNIX, DLL in Windows), with special entry
points. The Erlang runtime system calls these entry points when the driver is
started and when data is sent to the port. The port driver can also send data to
Erlang.
As a port driver is dynamically linked into the emulator process, this is the
fastest way of calling C-code from Erlang. Calling functions in the port driver
requires no context switches. But it is also the least safe way, because a crash
in the port driver brings the emulator down too.
The scenario is illustrated in the following figure:

title: Port Driver Communication

flowchart
 subgraph Legend
 direction LR

 os[OS Process]
 erl([Erlang Process])
 end

 subgraph emulator
 direction LR

 port{Port} --> erlProc
 erlProc([Connected process]) --> port

 port --> proc[Port Driver Shared Library]
 proc --> port
 end

 Erlang Program

Like a port program, the port communicates with an Erlang process. All
communication goes through one Erlang process that is the connected process of
the port driver. Terminating this process closes the port driver.
Before the port is created, the driver must be loaded. This is done with the
function erl_ddll:load_driver/2, with the name of the shared library as
argument.
The port is then created using the BIF open_port/2, with the
tuple {spawn, DriverName} as the first argument. The string SharedLib is the
name of the port driver. The second argument is a list of options, none in this
case:
-module(complex5).
-export([start/1, init/1]).

start(SharedLib) ->
 case erl_ddll:load_driver(".", SharedLib) of
 ok -> ok;
 {error, already_loaded} -> ok;
 _ -> exit({error, could_not_load_driver})
 end,
 spawn(?MODULE, init, [SharedLib]).

init(SharedLib) ->
 register(complex, self()),
 Port = open_port({spawn, SharedLib}, []),
 loop(Port).
Now complex5:foo/1 and complex5:bar/1 can be implemented. Both send a
message to the complex process and receive the following reply:
foo(X) ->
 call_port({foo, X}).
bar(Y) ->
 call_port({bar, Y}).

call_port(Msg) ->
 complex ! {call, self(), Msg},
 receive
 {complex, Result} ->
 Result
 end.
The complex process performs the following:
	Encodes the message into a sequence of bytes.
	Sends it to the port.
	Waits for a reply.
	Decodes the reply.
	Sends it back to the caller:

loop(Port) ->
 receive
 {call, Caller, Msg} ->
 Port ! {self(), {command, encode(Msg)}},
 receive
 {Port, {data, Data}} ->
 Caller ! {complex, decode(Data)}
 end,
 loop(Port)
 end.
Assuming that both the arguments and the results from the C functions are less
than 256, a simple encoding/decoding scheme is employed. In this scheme, foo
is represented by byte 1, bar is represented by 2, and the argument/result is
represented by a single byte as well:
encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.
The resulting Erlang program, including functions for stopping the port and
detecting port failures, is as follows:

-module(complex5).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(SharedLib) ->
 case erl_ddll:load_driver(".", SharedLib) of
	ok -> ok;
	{error, already_loaded} -> ok;
	_ -> exit({error, could_not_load_driver})
 end,
 spawn(?MODULE, init, [SharedLib]).

init(SharedLib) ->
 register(complex, self()),
 Port = open_port({spawn, SharedLib}, []),
 loop(Port).

stop() ->
 complex ! stop.

foo(X) ->
 call_port({foo, X}).
bar(Y) ->
 call_port({bar, Y}).

call_port(Msg) ->
 complex ! {call, self(), Msg},
 receive
	{complex, Result} ->
	 Result
 end.

loop(Port) ->
 receive
	{call, Caller, Msg} ->
	 Port ! {self(), {command, encode(Msg)}},
	 receive
		{Port, {data, Data}} ->
		 Caller ! {complex, decode(Data)}
	 end,
	 loop(Port);
	stop ->
	 Port ! {self(), close},
	 receive
		{Port, closed} ->
		 exit(normal)
	 end;
	{'EXIT', Port, Reason} ->
	 io:format("~p ~n", [Reason]),
	 exit(port_terminated)
 end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

 C Driver

The C driver is a module that is compiled and linked into a shared library. It
uses a driver structure and includes the header file erl_driver.h.
The driver structure is filled with the driver name and function pointers. It is
returned from the special entry point, declared with the macro
DRIVER_INIT(<driver_name>).
The functions for receiving and sending data are combined into a function,
pointed out by the driver structure. The data sent into the port is given as
arguments, and the replied data is sent with the C-function driver_output.
As the driver is a shared module, not a program, no main function is present.
All function pointers are not used in this example, and the corresponding fields
in the driver_entry structure are set to NULL.
All functions in the driver takes a handle (returned from start) that is just
passed along by the Erlang process. This must in some way refer to the port
driver instance.
The example_drv_start, is the only function that is called with a handle to
the port instance, so this must be saved. It is customary to use an allocated
driver-defined structure for this one, and to pass a pointer back as a
reference.
It is not a good idea to use a global variable as the port driver can be spawned
by multiple Erlang processes. This driver-structure is to be instantiated
multiple times:
/* port_driver.c */

#include <stdio.h>
#include "erl_driver.h"

typedef struct {
 ErlDrvPort port;
} example_data;

static ErlDrvData example_drv_start(ErlDrvPort port, char *buff)
{
 example_data* d = (example_data*)driver_alloc(sizeof(example_data));
 d->port = port;
 return (ErlDrvData)d;
}

static void example_drv_stop(ErlDrvData handle)
{
 driver_free((char*)handle);
}

static void example_drv_output(ErlDrvData handle, char *buff,
			 ErlDrvSizeT bufflen)
{
 example_data* d = (example_data*)handle;
 char fn = buff[0], arg = buff[1], res;
 if (fn == 1) {
 res = foo(arg);
 } else if (fn == 2) {
 res = bar(arg);
 }
 driver_output(d->port, &res, 1);
}

ErlDrvEntry example_driver_entry = {
 NULL,			/* F_PTR init, called when driver is loaded */
 example_drv_start,		/* L_PTR start, called when port is opened */
 example_drv_stop,		/* F_PTR stop, called when port is closed */
 example_drv_output,		/* F_PTR output, called when erlang has sent */
 NULL,			/* F_PTR ready_input, called when input descriptor ready */
 NULL,			/* F_PTR ready_output, called when output descriptor ready */
 "example_drv",		/* char *driver_name, the argument to open_port */
 NULL,			/* F_PTR finish, called when unloaded */
 NULL, /* void *handle, Reserved by VM */
 NULL,			/* F_PTR control, port_command callback */
 NULL,			/* F_PTR timeout, reserved */
 NULL,			/* F_PTR outputv, reserved */
 NULL, /* F_PTR ready_async, only for async drivers */
 NULL, /* F_PTR flush, called when port is about
				 to be closed, but there is data in driver
				 queue */
 NULL, /* F_PTR call, much like control, sync call
				 to driver */
 NULL, /* unused */
 ERL_DRV_EXTENDED_MARKER, /* int extended marker, Should always be
				 set to indicate driver versioning */
 ERL_DRV_EXTENDED_MAJOR_VERSION, /* int major_version, should always be
				 set to this value */
 ERL_DRV_EXTENDED_MINOR_VERSION, /* int minor_version, should always be
				 set to this value */
 0, /* int driver_flags, see documentation */
 NULL, /* void *handle2, reserved for VM use */
 NULL, /* F_PTR process_exit, called when a
				 monitored process dies */
 NULL /* F_PTR stop_select, called to close an
				 event object */
};

DRIVER_INIT(example_drv) /* must match name in driver_entry */
{
 return &example_driver_entry;
}

 Running the Example

Step 1. Compile the C code:
unix> gcc -o example_drv.so -fpic -shared complex.c port_driver.c
windows> cl -LD -MD -Fe example_drv.dll complex.c port_driver.c
Step 2. Start Erlang and compile the Erlang code:
> erl
Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
1> c(complex5).
{ok,complex5}
Step 3. Run the example:
2> complex5:start("example_drv").
<0.34.0>
3> complex5:foo(3).
4
4> complex5:bar(5).
10
5> complex5:stop().
stop

 C Nodes - Erlang System Documentation v27.3.4.3

C Nodes

The reader is referred to
the erl_interface users guide for
information about how to create C nodes.

 NIFs - Erlang System Documentation v27.3.4.3

NIFs

This section outlines an example of how to solve the example problem in
Problem Example by using Native Implemented Functions (NIFs).
NIFs are a simpler and more efficient way of calling C-code than using port
drivers. NIFs are most suitable for synchronous functions, such as foo and
bar in the example, that do some relatively short calculations without side
effects and return the result.
A NIF is a function that is implemented in C instead of Erlang. NIFs appear as
any other functions to the callers. They belong to a module and are called like
any other Erlang functions. The NIFs of a module are compiled and linked into a
dynamic loadable, shared library (SO in UNIX, DLL in Windows). The NIF library
must be loaded in runtime by the Erlang code of the module.
As a NIF library is dynamically linked into the emulator process, this is the
fastest way of calling C-code from Erlang (alongside port drivers). Calling NIFs
requires no context switches. But it is also the least safe, because a crash in
a NIF brings the emulator down too.

 Erlang Program

Even if all functions of a module are NIFs, an Erlang module is still needed for
two reasons:
	The NIF library must be explicitly loaded by Erlang code in the same module.
	All NIFs of a module must have an Erlang implementation as well.

Normally these are minimal stub implementations that throw an exception. But
they can also be used as fallback implementations for functions that do not have
native implementations on some architectures.
NIF libraries are loaded by calling erlang:load_nif/2, with the name of the
shared library as argument. The second argument can be any term that will be
passed on to the library and used for initialization:
-module(complex6).
-export([foo/1, bar/1]).
-nifs([foo/1, bar/1]).
-on_load(init/0).

init() ->
 ok = erlang:load_nif("./complex6_nif", 0).

foo(_X) ->
 erlang:nif_error(nif_library_not_loaded).
bar(_Y) ->
 erlang:nif_error(nif_library_not_loaded).
Here, the directive on_load is used to get function init to be automatically
called when the module is loaded. If init returns anything other than ok,
such when the loading of the NIF library fails in this example, the module is
unloaded and calls to functions within it, fail.
Loading the NIF library overrides the stub implementations and cause calls to
foo and bar to be dispatched to the NIF implementations instead.

 NIF Library Code

The NIFs of the module are compiled and linked into a shared library. Each NIF
is implemented as a normal C function. The macro ERL_NIF_INIT together with an
array of structures defines the names, arity, and function pointers of all the
NIFs in the module. The header file erl_nif.h must be included. As the library
is a shared module, not a program, no main function is to be present.
The function arguments passed to a NIF appears in an array argv, with argc
as the length of the array, and thus the arity of the function. The Nth argument
of the function can be accessed as argv[N-1]. NIFs also take an environment
argument that serves as an opaque handle that is needed to be passed on to most
API functions. The environment contains information about the calling Erlang
process:
#include <erl_nif.h>

extern int foo(int x);
extern int bar(int y);

static ERL_NIF_TERM foo_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
 int x, ret;
 if (!enif_get_int(env, argv[0], &x)) {
	return enif_make_badarg(env);
 }
 ret = foo(x);
 return enif_make_int(env, ret);
}

static ERL_NIF_TERM bar_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
 int y, ret;
 if (!enif_get_int(env, argv[0], &y)) {
	return enif_make_badarg(env);
 }
 ret = bar(y);
 return enif_make_int(env, ret);
}

static ErlNifFunc nif_funcs[] = {
 {"foo", 1, foo_nif},
 {"bar", 1, bar_nif}
};

ERL_NIF_INIT(complex6, nif_funcs, NULL, NULL, NULL, NULL)
Here, ERL_NIF_INIT has the following arguments:
	The first argument must be the name of the Erlang module as a C-identifier. It
will be stringified by the macro.
	The second argument is the array of ErlNifFunc structures containing name,
arity, and function pointer of each NIF.
	The remaining arguments are pointers to callback functions that can be used to
initialize the library. They are not used in this simple example, hence they
are all set to NULL.

Function arguments and return values are represented as values of type
ERL_NIF_TERM. Here, functions like enif_get_int and enif_make_int are used
to convert between Erlang term and C-type. If the function argument argv[0] is
not an integer, enif_get_int returns false, in which case it returns by
throwing a badarg-exception with enif_make_badarg.

 Running the Example

Step 1. Compile the C code:
unix> gcc -o complex6_nif.so -fpic -shared complex.c complex6_nif.c
windows> cl -LD -MD -Fe complex6_nif.dll complex.c complex6_nif.c
Step 2: Start Erlang and compile the Erlang code:
> erl
Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.5 (abort with ^G)
1> c(complex6).
{ok,complex6}
Step 3: Run the example:
3> complex6:foo(3).
4
4> complex6:bar(5).
10
5> complex6:foo("not an integer").
** exception error: bad argument
 in function complex6:foo/1
 called as comlpex6:foo("not an integer")

 Debugging NIFs and Port Drivers - Erlang System Documentation v27.3.4.3

Debugging NIFs and Port Drivers

 With great power comes great responsibilty

NIFs and port driver code run inside the Erlang VM OS process (the "Beam"). To
maximize performance the code is called directly by the same threads executing
Erlang beam code and has full access to all the memory of the OS process. A
buggy NIF/driver can thus make severe damage by corrupting memory.
In a best case scenario such memory corruption is detected immediately causing
the Beam to crash generating a core dump file which can be analyzed to find the
bug. However, it is very common for memory corruption bugs to not be immediately
detected when the faulty write happens, but instead much later, for example when
the calling Erlang process is garbage collected. When that happens it can be
very hard to find the root cause of the memory corruption by analysing the core
dump. All traces that could have indicated which specific buggy NIF/driver that
caused the corruption may be long gone.
Another kind of bugs that are hard to find are memory leaks. They may go
unnoticed and not cause problem until a deployed system has been running for a
long time.
The following sections describe tools that make it easier to both detect and
find the root cause of bugs like this. These tools are actively used during
development, testing and troubleshooting of the Erlang runtime system itself.
	Debug emulator
	Address Sanitizer
	Valgrind
	rr - Record and Replay

 Debug emulator

One way to make debugging easier is to run an emulator built with target
debug. It will
	Increase probability of detecting bugs earlier. It contains a lot more
runtime checks to ensure correct use of internal interfaces and data
structures.
	Generate a core dump that is easier to analyze. Compiler optimizations are
turned off, which stops the compiler from "optimizing away" variables, thus
making it easier/possible to inspect their state.
	Detect lock order violations. A runtime lock checker will verify that the
locks in the erl_nif and
erl_driver APIs are seized in a consistent order
that cannot result in deadlock bugs.

In fact, we recommend to use the debug emulator as default during development of
NIFs and drivers, regardless if you are troubleshooting bugs or not. Some subtle
bugs may not be detected by the normal emulator and just happen to work anyway
by chance. However, another version of the emulator, or even different
circumstances within the same emulator, may cause the bug to later provoke all
kinds of problems.
The main disadvantage of the debug emulator is its reduced performance. The
extra runtime checks and lack of compiler optimizations may result in a slowdown
with a factor of two or more depending on load. The memory footprint should be
about the same.
If the debug emulator is part of the Erlang/OTP installation, it can be
started with the -emu_type option.
> erl -emu_type debug
Erlang/OTP 25 [erts-13.0.2] ... [type-assertions] [debug-compiled] [lock-checking]

Eshell V13.0.2 (abort with ^G)
1>
If the debug emulator is not part of the installation, you need to
build it from the Erlang/OTP source code.
After building from source either make an Erlang/OTP installation or you can run
the debug emulator directly in the source tree with the cerl script:
> $ERL_TOP/bin/cerl -debug
Erlang/OTP 25 [erts-13.0.2] ... [type-assertions] [debug-compiled] [lock-checking]

Eshell V13.0.2 (abort with ^G)
1>
The cerl script can also be used as a convenient way to start the debugger
gdb for core dump analysis:
> $ERL_TOP/bin/cerl -debug -core core.12345
or
> $ERL_TOP/bin/cerl -debug -rcore core.12345
The first variant starts Emacs and runs gdb within, while the other -rcore
runs gdb directly in the terminal. Apart from starting gdb with the correct
beam.debug.smp executable file it will also read the file
$ERL_TOP/erts/etc/unix/etp-commands which contains a lot of gdb command for
inspecting a beam core dump. For example, the command etp that will print the
content of an Erlang term (Eterm) in plain Erlang syntax.

 Address Sanitizer

AddressSanitizer (asan) is
an open source programming tool that detects memory corruption bugs such as
buffer overflows, use-after-free and memory leaks. AddressSanitizer is based on
compiler instrumentation and is supported by both gcc and clang.
Similar to the debug emulator, the asan emulator runs slower than normal,
about 2-3 times slower. However, it also has a larger memory footprint, about 3
times more memory than normal.
To get full effect you should compile both your own NIF/driver code as well as
the Erlang emulator with AddressSanitizer instrumentation. Compile your own code
by passing option -fsanitize=address to gcc or clang. Other recommended
options that will improve the fault identification are -fno-common and
-fno-omit-frame-pointer.
Build and run the emulator with AddressSanitizer support by using the same
procedure as for the debug emulator, except use the asan build target instead
of debug.
	Run in source tree - If you run the asan emulator directly in the source
tree with the cerl script you only need to set environment variable
ASAN_LOG_DIR to the directory where the error log files will be generated.
> export ASAN_LOG_DIR=/my/asan/log/dir
> $ERL_TOP/bin/cerl -asan
Erlang/OTP 25 [erts-13.0.2] ... [address-sanitizer]

Eshell V13.0.2 (abort with ^G)
1>
You may however also want to set ASAN_OPTIONS="halt_on_error=true" if you
want the emulator to crash when an error is detected.

	Run installed Erlang/OTP - If you run the asan emulator in an installed
Erlang/OTP with erl -emu_type asan you need to set the path to the error log
file with
> export ASAN_OPTIONS="log_path=/my/asan/log/file"
To avoid false positive memory leak reports from the emulator itself set
LSAN_OPTIONS (LSAN=LeakSanitizer):
> export LSAN_OPTIONS="suppressions=$ERL_TOP/erts/emulator/asan/suppress"
The suppress file is currently not installed but can be copied manually from
the source tree to wherever you want it.

Memory corruption errors are reported by AddressSanitizer when they happen, but
memory leaks are only checked and reported by default then the emulator
terminates.

 Valgrind

An even more heavy weight debugging tool is Valgrind. It
can also find memory corruption bugs and memory leaks similar to asan.
Valgrind is not as good at buffer overflow bugs, but it will find use of
undefined data, which is a type of error that asan cannot detect.
Valgrind is much slower than asan and it is incapable at exploiting CPU
multicore processing. We therefore recommend asan as the first choice before
trying valgrind.
Valgrind runs as a virtual machine itself, emulating execution of hardware
machine instructions. This means you can run almost any program unchanged on
valgrind. However, we have found that the beam executable benefits from being
compiled with special adaptions for running on valgrind.
Build the emulator with valgrind target the same as is done for debug and
asan. Note that valgrind needs to be installed on the machine before the
build starts.
Run the valgrind emulator directly in the source tree with the cerl script.
Set environment variable VALGRIND_LOG_DIR to the directory where the error log
files will be generated.
> export VALGRIND_LOG_DIR=/my/valgrind/log/dir
> $ERL_TOP/bin/cerl -valgrind
Erlang/OTP 25 [erts-13.0.2] ... [valgrind-compiled]

Eshell V13.0.2 (abort with ^G)
1>

 rr - Record and Replay

Last but not least, the fantastic interactive debugging tool
rr, developed by Mozilla as open source. rr stands
for Record and Replay. While a core dump represents only a static snapshot of
the OS process when it crashed, with rr you instead record the entire session,
from start of the OS process to the end (the crash). You can then replay that
session from within gdb. Single step, set breakpoints and watchpoints, and
even execute backwards.
Considering its powerful utility, rr is remarkably light weight. It runs on
Linux with any reasonably modern x86 CPU. You may get a two times slowdown when
executing in recording mode. The big weakness is its inability to exploite CPU
multicore processing. If the bug is a race condition between concurrently
running threads, it may be hard to reproduce with rr.
rr does not require any special instrumented compilation. However, if
possible, run it together with the debug emulator, as that will result in a
much nicer debugging experience. You run rr in the source tree using the
cerl script.
Here is an example of a typical session. First we catch the crash in an rr
recording session:
> $ERL_TOP/bin/cerl -debug -rr
rr: Saving execution to trace directory /home/foobar/.local/share/rr/beam.debug.smp-1.
Erlang/OTP 25 [erts-13.0.2]

Eshell V13.0.2 (abort with ^G)
1> mymod:buggy_nif().
Segmentation fault
Now we can replay that session with rr replay:
> rr replay
GNU gdb (Ubuntu 9.2-0ubuntu1~20.04.1) 9.2
:
(rr) continue
:
Thread 2 received signal SIGSEGV, Segmentation fault.
(rr) backtrace
You get the call stack at the moment of the crash. Bad luck, it is somewhere
deep down in the garbage collection of the beam. But you manage to figure out
that variable hp points to a broken Erlang term.
Set a watch point on that memory position and resume execution backwards. The
debugger will then stop at the exact position when that memory position *hp
was written.
(rr) watch -l *hp
Hardware watchpoint 1: -location *hp
(rr) reverse-continue
Continuing.

Thread 2 received signal SIGSEGV, Segmentation fault.
This is a quirk to be aware about. We started by executing forward until it
crashed with SIGSEGV. We are now executing backwards from that point, so we are
hitting the same SIGSEGV again but from the other direction. Just continue
backwards once more to move past it.
(rr) reverse-continue
Continuing.

Thread 2 hit Hardware watchpoint 1: -location *hp

Old value = 42
New value = 0
And here we are at the position when someone wrote a broken term on the process
heap. Note that "Old value" and "New value" are reversed when we execute
backwards. In this case the value 42 was written on the heap. Let's see who the
guilty one is:
(rr) backtrace

 Introduction - Erlang System Documentation v27.3.4.3

Introduction

This section describes the issues that are specific for running Erlang on an UNIX
embedded system. It describes the differences in installing and starting Erlang
compared to how it is done for a non-embedded system.
For details on how to create a target system, see Creating and Upgrading a Target System
in the System Principles section.
When running on Windows, so special considerations need to be made. Starting Erlang
should be done via erlsrv.

 Installing an Embedded System

This section is about installing an embedded system. The following topics are
considered:
	Creating user and installation directory
	Installing an embedded system
	Configuring automatic start at boot
	Changing permission for reboot
	Setting TERM environment variable

Several of the procedures in this section require expert knowledge of the
operating system. For most of them super user privilege is needed.

 Creating User and Installation Directory

It is recommended that the embedded environment is run by an ordinary user, that
is, a user who does not have super user privileges.
In this section, it is assumed that the username is otpuser and that the home
directory of that user is:
/home/otpuser
It is also assumed that in the home directory of otpuser, there is a directory
named otp, the full path of which is:
/home/otpuser/otp
This directory is the installation directory of the embedded environment.

 Installing an Embedded System

The procedure for installing an embedded system is the same as for an ordinary
system (see Installation Guide and Creating and Upgrading a Target System
in the System Principles section), except for the following:
	The (compressed) archive file is to be extracted in the installation
directory defined above.
	It is not needed to link the start script to a standard directory like
/usr/local/bin.

 Configuring Automatic Start at Boot

A true embedded system must start when the system boots. This section accounts
for the necessary configurations needed to achieve that using init.d start
scripts.
The embedded system and all the applications start automatically if the script
file shown below is added to directory /etc/rc3.d. The file must be owned and
readable by root. Its name cannot be arbitrarily assigned; the following name
is recommended:
S75otp.system
For more details on initialization (and termination) scripts, and naming
thereof, see the init.d documentation on your OS.
#!/bin/sh
#
File name: S75otp.system
Purpose: Automatically starts Erlang and applications when the
system starts
Author: janne@erlang.ericsson.se
Resides in: /etc/rc3.d
#

if [! -d /usr/bin]
then # /usr not mounted
 exit
fi

killproc() { # kill the named process(es)
 pid=`/usr/bin/ps -e |
 /usr/bin/grep -w $1 |
 /usr/bin/sed -e 's/^ *//' -e 's/ .*//'`
 ["$pid" != ""] && kill $pid
}

Start/stop processes required for Erlang

case "$1" in
'start')
 # Start the Erlang emulator
 #
 su - otpuser -c "/home/otpuser/otp/bin/start" &
 ;;
'stop')
 killproc beam
 ;;
*)
 echo "Usage: $0 { start | stop }"
 ;;
esac
File /home/otpuser/otp/bin/start referred to in the above script is
precisely the start script described in Starting Erlang.
The script variable $OTPROOT in that start script corresponds to the following example path used
in this section:
/home/otpuser/otp
The start script is to be edited accordingly.
Use of the killproc procedure in the above script can be combined with a call
to erl_call, for example:
$SOME_PATH/erl_call -n Node init stop
To take Erlang down gracefully, see the
erl_call(1) manual page in
erl_interface for details on the use of erl_call. However, that requires
that Erlang runs as a distributed node, which is not always the case.
The killproc procedure is not to be removed. The purpose is here to move from
run level 3 (multi-user mode with networking resources) to run level 2
(multi-user mode without such resources), in which Erlang is not to run.

 Changing Permissions for Reboot

If the HEART_COMMAND environment variable is to be set in the start script
in Starting Erlang, and if the value is to be set to the path of the
reboot command, that is:
HEART_COMMAND=/usr/sbin/reboot
then the ownership and file permissions for /usr/sbin/reboot must be changed
as follows:
chown 0 /usr/sbin/reboot
chmod 4755 /usr/sbin/reboot
See also the heart manual page in Kernel.

 Setting TERM Environment Variable

When the Erlang runtime system is automatically started from the S75otp.system
script, the TERM environment variable must be set. The following is a minimal
setting:
TERM=dumb
This is to be added to the start script.

 Starting Erlang

This section describes how an embedded system is started. Four programs are
involved and they normally reside in the directory <ERL_INSTALL_DIR>/bin. The
only exception is the start program, which can be located anywhere, and is
also the only program that must be modified by the user.
In an embedded system, there is usually no interactive shell. However, an
operator can attach to the Erlang system by command to_erl.
The operator is then connected to the Erlang shell and can give ordinary Erlang commands. All
interaction with the system through this shell is logged in a special directory.
Basically, the procedure is as follows:
	The start) program is called when the machine is started.
	It calls run_erl, which sets up things so the operator can attach to the
system.
	It calls start_erl, which calls the correct version of
erlexec (which is located in <ERL_INSTALL_DIR>/erts-EVsn/bin) with the correct boot and
config files.

 Programs

 start

This program is called when the machine is started. It can be modified or
rewritten to suit a special system. By default, it must be called start and
reside in <ERL_INSTALL_DIR>/bin. Another start program can be used, by using
configuration parameter start_prg in application SASL.
The start program must call run_erl as shown below. It must also take an
optional parameter, which defaults to
<ERL_INSTALL_DIR>/releases/start_erl.data.
This program is to set static parameters and environment variables such as
-sname Name and HEART_COMMAND to reboot the machine.
The <RELDIR> directory is where new release packets are installed, and where
the release handler keeps information about releases. For more information, see
the release_handler manual page in SASL.
The following script illustrates the default behaviour of the program:
#!/bin/sh
Usage: start [DataFile]
#
ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]
then
 RELDIR=$ROOTDIR/releases
fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start_erl \
 $ROOTDIR $RELDIR $START_ERL_DATA" > /dev/null 2>&1 &
The following script illustrates a modification where the node is given the name
cp1, and where the environment variables HEART_COMMAND and TERM have been
added to the previous script:
#!/bin/sh
Usage: start [DataFile]
#
HEART_COMMAND=/usr/sbin/reboot
TERM=dumb
export HEART_COMMAND TERM

ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]
then
 RELDIR=$ROOTDIR/releases
fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start_erl \
 $ROOTDIR $RELDIR $START_ERL_DATA -heart -sname cp1" > /dev/null 2>&1 &
If a diskless and/or read-only client node is about to start, file
start_erl.data is located in the client directory at the master node. Thus,
the START_ERL_DATA line is to look like:
CLIENTDIR=$ROOTDIR/clients/clientname
START_ERL_DATA=${1:-$CLIENTDIR/bin/start_erl.data}

 run_erl

This program is used to start the emulator, but you will not be connected to the
shell. to_erl is used to connect to the Erlang shell.
Usage: run_erl pipe_dir/ log_dir "exec command [parameters ...]"
Here:
	pipe_dir/ is to be /tmp/ (to_erl uses this name by default).
	log_dir is where the log files are written.
	command [parameters] is executed.
	Everything written to stdin and stdout is logged in log_dir.

Log files are written in log_dir. Each log file has a name of the form
erlang.log.N, where N is a generation number, ranging from 1 to 5. Each log
file holds up to 100 kB text. As time goes by, the following log files are found
in the log file directory:
erlang.log.1
erlang.log.1, erlang.log.2
erlang.log.1, erlang.log.2, erlang.log.3
erlang.log.1, erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.2, erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.3, erlang.log.4, erlang.log.5, erlang.log.1
...
The most recent log file is the rightmost in each row. That is, the most recent
file is the one with the highest number, or if there are already four files, the
one before the skip.
When a log file is opened (for appending or created), a time stamp is written to
the file. If nothing has been written to the log files for 15 minutes, a record
is inserted that says that we are still alive.
For more details see run_erl in the ERTS documentation.

 to_erl

This program is used to attach to a running Erlang runtime system, started with
run_erl.
Usage: to_erl [pipe_name | pipe_dir]
Here pipe_name defaults to /tmp/erlang.pipe.N.
To disconnect from the shell without exiting the Erlang system, type Ctrl-D.

 start_erl

This program starts the Erlang emulator with parameters -boot and -config
set. It reads data about where these files are located from a file named
start_erl.data, which is located in <RELDIR>. Each new release introduces a
new data file. This file is automatically generated by the release handler in
Erlang.
The following script illustrates the behaviour of the program:
#!/bin/sh
#
This program is called by run_erl. It starts
the Erlang emulator and sets -boot and -config parameters.
It should only be used at an embedded target system.
#
Usage: start_erl RootDir RelDir DataFile [ErlFlags ...]
#
ROOTDIR=$1
shift
RELDIR=$1
shift
DataFile=$1
shift

ERTS_VSN=`awk '{print $1}' $DataFile`
VSN=`awk '{print $2}' $DataFile`

BINDIR=$ROOTDIR/erts-$ERTS_VSN/bin
EMU=beam
PROGNAME=`echo $0 | sed 's/.*\///'`
export EMU
export ROOTDIR
export BINDIR
export PROGNAME
export RELDIR

exec $BINDIR/erlexec -boot $RELDIR/$VSN/start -config $RELDIR/$VSN/sys $*
If a diskless and/or read-only client node with the SASL configuration parameter
static_emulator set to true is about to start, the -boot and -config
flags must be changed.
As such a client cannot read a new start_erl.data file (the file cannot be
changed dynamically). The boot and config files are always fetched from the same
place (but with new contents if a new release has been installed).
The release_handler copies these files to the bin directory in the client
directory at the master nodes whenever a new release is made permanent.
Assuming the same CLIENTDIR as above, the last line is to look like:
exec $BINDIR/erlexec -boot $CLIENTDIR/bin/start \
 -config $CLIENTDIR/bin/sys $*

OEBPS/dist/epub-4WIP524F.js
